311 resultados para Asynchronous machinery
em Queensland University of Technology - ePrints Archive
Resumo:
In Orissa state, India, the DakNet system supports asynchronous Internet communication between an urban hub and rural nodes. DakNet is noteworthy in many respects, not least in how the system leverages existing transport infrastructure. Wi-Fi transceivers mounted on local buses send and receive user data from roadside kiosks, for later transfer to/from the Internet via wireless protocols. This store-and-forward system allows DakNet to offer asynchronous communication capacity to rural users at low cost. The original ambition of the DakNet system was to provide email and SMS facilities to rural communities. Our 2008 study of the communicative ecology surrounding the DakNet system revealed that this ambition has now evolved – in response to market demand – to the extent that e-shopping (rather than email) has become the primary driver behind the DakNet offer.
Resumo:
The ability to forecast machinery failure is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models for forecasting machinery health based on condition data. Although these models have aided the advancement of the discipline, they have made only a limited contribution to developing an effective machinery health prognostic system. The literature review indicates that there is not yet a prognostic model that directly models and fully utilises suspended condition histories (which are very common in practice since organisations rarely allow their assets to run to failure); that effectively integrates population characteristics into prognostics for longer-range prediction in a probabilistic sense; which deduces the non-linear relationship between measured condition data and actual asset health; and which involves minimal assumptions and requirements. This work presents a novel approach to addressing the above-mentioned challenges. The proposed model consists of a feed-forward neural network, the training targets of which are asset survival probabilities estimated using a variation of the Kaplan-Meier estimator and a degradation-based failure probability density estimator. The adapted Kaplan-Meier estimator is able to model the actual survival status of individual failed units and estimate the survival probability of individual suspended units. The degradation-based failure probability density estimator, on the other hand, extracts population characteristics and computes conditional reliability from available condition histories instead of from reliability data. The estimated survival probability and the relevant condition histories are respectively presented as “training target” and “training input” to the neural network. The trained network is capable of estimating the future survival curve of a unit when a series of condition indices are inputted. Although the concept proposed may be applied to the prognosis of various machine components, rolling element bearings were chosen as the research object because rolling element bearing failure is one of the foremost causes of machinery breakdowns. Computer simulated and industry case study data were used to compare the prognostic performance of the proposed model and four control models, namely: two feed-forward neural networks with the same training function and structure as the proposed model, but neglected suspended histories; a time series prediction recurrent neural network; and a traditional Weibull distribution model. The results support the assertion that the proposed model performs better than the other four models and that it produces adaptive prediction outputs with useful representation of survival probabilities. This work presents a compelling concept for non-parametric data-driven prognosis, and for utilising available asset condition information more fully and accurately. It demonstrates that machinery health can indeed be forecasted. The proposed prognostic technique, together with ongoing advances in sensors and data-fusion techniques, and increasingly comprehensive databases of asset condition data, holds the promise for increased asset availability, maintenance cost effectiveness, operational safety and – ultimately – organisation competitiveness.
Resumo:
One of the main challenges of slow speed machinery condition monitoring is that the energy generated from an incipient defect is too weak to be detected by traditional vibration measurements due to its low impact energy. Acoustic emission (AE) measurement is an alternative for this as it has the ability to detect crack initiations or rubbing between moving surfaces. However, AE measurement requires high sampling frequency and consequently huge amount of data are obtained to be processed. It also requires expensive hardware to capture those data, storage and involves signal processing techniques to retrieve valuable information on the state of the machine. AE signal has been utilised for early detection of defects in bearings and gears. This paper presents an online condition monitoring (CM) system for slow speed machinery, which attempts to overcome those challenges. The system incorporates relevant signal processing techniques for slow speed CM which include noise removal techniques to enhance the signal-to-noise and peak-holding down sampling to reduce the burden of massive data handling. The analysis software works under Labview environment, which enables online remote control of data acquisition, real-time analysis, offline analysis and diagnostic trending. The system has been fully implemented on a site machine and contributing significantly to improve the maintenance efficiency and provide a safer and reliable operation.
Resumo:
This paper presents an overview of the CRC for Infrastructure and Engineering Asset Management (CIEAM)’s rotating machine health monitoring project and the status of the research progress. The project focuses on the development of a comprehensive diagnostic tool for condition monitoring and systematic analysis of rotating machinery. Particularly attention focuses on the machine health monitoring of diesel engines, compressors and pumps by using acoustic emission and vibration-based monitoring techniques. The paper also provides a brief summary of the work done by the three main research collaborating partners in the project, namely, Queensland University of Technology (QUT), Curtin University of Technology (CUT) and the University of Western Australia (UWA). Preliminary test and analysis results from this work are also reported in the paper
Resumo:
Wikis have proved to be very effective collaboration and knowledge management tools in large variety of fields thanks to their simplicity and flexible nature. Another important development for the internet is the emergence of powerful mobile devices supported by fast and reliable wireless networks. The combination of these developments begs the question of how to extend wikis on mobile devices and how to leverage mobile devices' rich modalities to supplement current wikis. Realizing that composing and consuming through auditory channel is the most natural and efficient way for mobile device user, this paper explores the use of audio as the medium of wiki. Our work, as the first step towards this direction, creates a framework called Mobile Audio Wiki which facilitates asynchronous audio-mediated collaboration on the move. In this paper, we present the design of Mobile Audio Wiki. As a part of such design, we propose an innovative approach for a light-weight audio content annotation system for enabling group editing, versioning and cross-linking among audio clips. To elucidate the novel collaboration model introduced by Mobile Audio Wiki, its four usage modes are identified and presented in storyboard format. Finally, we describe the initial design for presentation and navigation of Mobile Audio Wiki.
Resumo:
The purpose of this paper is to determine and discuss on the plant and machinery valuation syllabus for higher learning education in Malaysia to ensure the practicality of the subject in the real market. There have been limited studies in plant and machinery area, either by scholars or practitioners. Most papers highlighted the methodologies but limited papers discussed on the plant and machinery valuation education. This paper will determine inputs for plant and machinery valuation guidance focussing on the syllabus set up and references for valuers interested in this area of expertise. A qualitative approach via content analysis is conducted to compare international and Malaysian plant and machinery valuation syllabus and suggest improvements for Malaysian syllabus. It is found that there are few higher education institutions in the world that provide plant and machinery valuation courses as part of their property studies syllabus. Further investigation revealed that on the job training is the preferable method for plant and machinery valuation education and based on the valuers experience. The significance of this paper is to increase the level of understanding of plant and machinery valuation criteria and provide suggestions to Malaysian stakeholders with the relevant elements in plant and machinery valuation education syllabus.