7 resultados para Astronomy and Astrophysics

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims We combine measurements of weak gravitational lensing from the CFHTLS-Wide survey, supernovae Ia from CFHT SNLS and CMB anisotropies from WMAP5 to obtain joint constraints on cosmological parameters, in particular, the dark-energy equation-of-state parameter w. We assess the influence of systematics in the data on the results and look for possible correlations with cosmological parameters. Methods We implemented an MCMC algorithm to sample the parameter space of a flat CDM model with a dark-energy component of constant w. Systematics in the data are parametrised and included in the analysis. We determine the influence of photometric calibration of SNIa data on cosmological results by calculating the response of the distance modulus to photometric zero-point variations. The weak lensing data set is tested for anomalous field-to-field variations and a systematic shape measurement bias for high-redshift galaxies. Results Ignoring photometric uncertainties for SNLS biases cosmological parameters by at most 20% of the statistical errors, using supernovae alone; the parameter uncertainties are underestimated by 10%. The weak-lensing field-to-field variance between 1 deg2-MegaCam pointings is 5-15% higher than predicted from N-body simulations. We find no bias in the lensing signal at high redshift, within the framework of a simple model, and marginalising over cosmological parameters. Assuming a systematic underestimation of the lensing signal, the normalisation increases by up to 8%. Combining all three probes we obtain -0.10 < 1 + w < 0.06 at 68% confidence ( -0.18 < 1 + w < 0.12 at 95%), including systematic errors. Our results are therefore consistent with the cosmological constant . Systematics in the data increase the error bars by up to 35%; the best-fit values change by less than 0.15.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article places the 6 June 2012 transit of Venus in the context of James Cook’s voyage from England to the South Pacific to observe the 1769 transit of Venus. A description is given on how to use a computer program called Stellarium to ‘observe’ the 1769 transit of Venus exactly as Cook saw it from the island of Tahiti in the South Pacific.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes a simple activity for plotting and characterising the light curve from an exoplanet transit event by way of differential photometry analysis. Using free digital imaging software, participants analyse a series of telescope images with the goal of calculating various exoplanet parameters, including its size, orbital radius and habitability. The activity has been designed for a high-school or undergraduate university level and introduces fundamental concepts in astrophysics and an understanding of the basis for exoplanetary science, the transit method and digital photometry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plasma nanoscience is an emerging multidisciplinary research field at the cutting edge of a large number of disciplines including but not limited to physics and chemistry of plasmas and gas discharges, materials science, surface science, nanoscience and nanotechnology, solid-state physics, space physics and astrophysics, photonics, optics, plasmonics, spintronics, quantum information, physical chemistry, biomedical sciences and related engineering subjects. This paper examines the origin, progress and future perspectives of this research field driven by the global scientific and societal challenges. The future potential of plasma nanoscience to remain a highly topical area in the global research and technological agenda in the age of fundamental-level control for a sustainable future is assessed using a framework of the five Grand Challenges for Basic Energy Sciences recently mapped by the US Department of Energy. It is concluded that the ongoing research is very relevant and is expected to substantially expand to competitively contribute to the solution of all of these Grand Challenges. The approach to controlling energy and matter at nano- and subnanoscales is based on identifying the prevailing carriers and transfer mechanisms of the energy and matter at the spatial and temporal scales that are most relevant to any particular nanofabrication process. Strong accent is made on the competitive edge of the plasma-based nanotechnology in applications related to the major socio-economic issues (energy, food, water, health and environment) that are crucial for a sustainable development of humankind. Several important emerging topics, opportunities and multidisciplinary synergies for plasma nanoscience are highlighted. The main nanosafety issues are also discussed and the environment- and human health-friendly features of plasma-based nanotech are emphasized.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The unusual behaviour of fine lunar regolith like stickiness and low heat conductivity is dominated by the structural arrangement of its finest fraction in the outer-most topsoil layer. Here, we show the previously unknown phenomenon of building a globular 3-D superstructure within the dust fraction of the regolith. New technology, Transmission X-ray Microscopy (TXM) with tomographic reconstruction, reveals a highly porous network of cellular void system in the lunar finest dust fraction aggregates. Such porous chained aggregates are composed of sub-micron in size particles that build cellular void networks. Voids are a few micrometers in diameter. Discovery of such a superstructure within the finest fraction of the lunar topsoil allow building a model of heat transfer which is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this article some basic laboratory bench experiments are described that are useful for teaching high school students some of the basic principles of stellar astrophysics. For example, in one experiment, students slam a plastic water-filled bottle down onto a bench, ejecting water towards the ceiling illustrating the physics associated with a type II supernova explosion. In another experiment, students roll marbles up and down a double ramp in an attempt to get a marble to enter a tube half way up the slope, which illustrates quantum tunnelling in stellar cores. The experiments are reasonably low cost to either purchase or manufacture.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The following types of experiments for a proposed Space Station Microgravity Particle Research Facility are described: (1) nucleation of refractory vapors at low pressure/high temperature; (2) coagulation of refractory grains; (3) optical properties of refractory grains; (4) mantle growth on refractory cores; (5) coagulation of core-mantle grains; (6) optical properties of core-mantle grains; (7) lightning strokes in the primitive solar nebula; and (8) separation of dust from a grain/gas mixture that interacts with a meter-sized planetesimal to determine if accretion occurs. The required capabilities and desired hardware for the facility are detailed.