20 resultados para Arnauld, Antoine
em Queensland University of Technology - ePrints Archive
Resumo:
Over the years, approaches to obesity prevention and treatment have gone from focusing on genetic and other biological factors to exploring a diversity of diets and individual behavior modification interventions anchored primarily in the power of the mind, to the recent shift focusing on societal interventions to design ";temptation-proof"; physical, social, and economic environments. In spite of repeated calls to action, including those of the World Health Organization (WHO), the pandemic continues to progress. WHO recently projected that if the current lifestyle trend in young and adult populations around the world persist, by 2012 in countries like the USA, health care costs may amount to as much as 17.7% of the GDP. Most importantly, in large part due to the problems of obesity, those children may be the first generation ever to have a shorter life expectancy than that of their parents. This work presents the most current research and proposals for addressing the pandemic. Past studies have focused primarly on either genetic or behavioral causes for obesity, however today's research indicates that a strongly integrated program is the best prospect for success in overcoming obesity. Furthermore, focus on the role of society in establishing an affordable, accessible and sustainable program for implementing these lifestyle changes is vital, particularly for those in economically challenged situations, who are ultimately at the highest risk for obesity. Using studies from both neuroscience and behavioral science to present a comprehensive overview of the challenges and possible solutions, The brain-to-society approach to obesity prevention focuses on what is needed in order to sustain a healthy, pleasurable and affordable lifestyle.
Resumo:
A year ago, I became aware of the historical existence of the group CERFI— Le centre d’etudes, de recherches, et de formation institutionelles, or The Study Center for Institutional Research and Formation. CERFI emerged in 1967 under the hand of Lacanian psychiatrist and Trotskyite activist Félix Guattari, whose antonymous journal Recherches chronicled the group’s subversive experiences, experiments, and government-sponsored urban projects. It was a singularly bizarre meeting of the French bureaucracy with militant activist groups, the French intelligentsia, and architectural and planning practitioners at the close of the ‘60s. Nevertheless, CERFI’s analysis of the problems of society was undertaken precisely from the perspective of the state, and the Institute acknowledged a “deep complicity between the intellectual and statesman ... because the first critics of the State, are officials themselves!”1 CERFI developed out of FGERI (The Federation of Groups for Institutional Study and Research), started by Guattari two years earlier. While FGERI was created for the analysis of mental institutions stemming from Guattari’s work at La Borde, an experimental psychiatric clinic, CERFI marks the group’s shift toward urbanism—to the interrogation of the city itself. Not only a platform for radical debate on architecture and the city, CERFI was a direct agent in the development of urban planning schemata for new towns in France. 2 CERFI’s founding members were Guattari, the economist and urban theorist François Fourquet, feminist philosopher Liane Mozère, and urban planner and editor of Multitides Anne Querrien—Guattari’s close friend and collaborator. The architects Antoine Grumback, Alain Fabre, Macary, and Janine Joutel were also members, as well as urbanists Bruno Fortier, Rainier Hoddé, and Christian de Portzamparc. 3 CERFI was the quintessential social project of post-‘68 French urbanism. Located on the Far Left and openly opposed to the Communist Party, this Trotskyist cooperative was able to achieve what other institutions, according to Fourquet, with their “customary devices—the politburo, central committee, and the basic cells—had failed to do.”4 The decentralized institute recognized that any formal integration of the group was to “sign its own death warrant; so it embraced a skein of directors, entangled, forming knots, liquidating all at once, and spinning in an unknown direction, stopping short and returning back to another node.” Allergic to the very idea of “party,” CERFI was a creative project of free, hybrid-aesthetic blocs talking and acting together, whose goal was none other than the “transformation of the libidinal economy of the militant revolutionary.” The group believed that by recognizing and affirming a “group unconscious,” as well as their individual unconscious desires, they would be able to avoid the political stalemates and splinter groups of the traditional Left. CERFI thus situated itself “on the side of psychosis”—its confessed goal was to serve rather than repress the utter madness of the urban malaise, because it was only from this mad perspective on the ground that a properly social discourse on the city could be forged.
Resumo:
This research was a step towards the comprehension of the nano-particles interaction with bubbles created during boiling. It was aimed at solving the controversies of whether the heat transfer is enhanced or deteriorated during the boiling of the nanofluid. Experiments were conducted in normal gravity and reduced gravity environments on-board the European Space Agency Parabolic Flight Program. The local modification of the thermo-physical properties of the fluid and moreover the modification experienced in the liquid microlayer under the growing vapour bubble were the dominant factors in explaining the mechanisms of the boiling behaviour of the nanofluid.
Resumo:
INEX investigates focused retrieval from structured documents by providing large test collections of structured documents, uniform evaluation measures, and a forum for organizations to compare their results. This paper reports on the INEX 2013 evaluation campaign, which consisted of four activities addressing three themes: searching professional and user generated data (Social Book Search track); searching structured or semantic data (Linked Data track); and focused retrieval (Snippet Retrieval and Tweet Contextualization tracks). INEX 2013 was an exciting year for INEX in which we consolidated the collaboration with (other activities in) CLEF and for the second time ran our workshop as part of the CLEF labs in order to facilitate knowledge transfer between the evaluation forums. This paper gives an overview of all the INEX 2013 tracks, their aims and task, the built test-collections, and gives an initial analysis of the results
Resumo:
INEX investigates focused retrieval from structured documents by providing large test collections of structured documents, uniform evaluation measures, and a forum for organizations to compare their results. This paper reports on the INEX 2008 evaluation campaign, which consisted of a wide range of tracks: Ad hoc, Book, Efficiency, Entity Ranking, Interactive, QA, Link the Wiki, and XML Mining.
Resumo:
The amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) reverses dopamine and serotonin transporters to produce efflux of dopamine and serotonin, respectively, in regions of the brain that have been implicated in reward. However, the role of serotonin/dopamine interactions in the behavioral effects of MDMA remains unclear. We previously showed that MDMA-induced locomotion, serotonin and dopamine release are 5-HT(2B) receptor-dependent. The aim of the present study was to determine the contribution of serotonin and 5-HT(2B) receptors to the reinforcing properties of MDMA. We show here that 5-HT(2B) (-/-) mice do not exhibit behavioral sensitization or conditioned place preference following MDMA (10 mg/kg) injections. In addition, MDMA-induced reinstatement of conditioned place preference after extinction and locomotor sensitization development are each abolished by a 5-HT(2B) receptor antagonist (RS127445) in wild type mice. Accordingly, MDMA-induced dopamine D1 receptor-dependent phosphorylation of extracellular regulated kinase in nucleus accumbens is abolished in mice lacking functional 5-HT(2B) receptors. Nevertheless, high doses (30 mg/kg) of MDMA induce dopamine-dependent but serotonin and 5-HT(2B) receptor-independent behavioral effects. These results underpin the importance of 5-HT(2B) receptors in the reinforcing properties of MDMA and illustrate the importance of dose-dependent effects of MDMA on serotonin/dopamine interactions.
Resumo:
The putative role of the N-terminal region of rhodopsin-like 7 transmembrane biogenic amine receptors in agonist-induced signaling has not yet been clarified despite recent advances in 7 transmembrane receptor structural biology. Given the existence of N-terminal nonsynonymous polymorphisms (R6G;E42G) within the HTR2B gene in a drug-abusing population, we assessed whether these polymorphisms affect 5-hydroxytryptamine 2B (5-HT2B) receptor in vitro pharmacologic and coupling properties in transfected COS-7 cells. Modification of the 5-HT2B receptor N terminus by the R6G;E42G polymorphisms increases such agonist signaling pathways as inositol phosphate accumulation as assessed by either classic or operational models. The N-terminal R6G;E42G mutations of the 5-HT2B receptor also increase cell proliferation and slow its desensitization kinetics compared with the wild-type receptor, further supporting a role for the N terminus in transduction efficacy. Furthermore, by coexpressing a tethered wild-type 5-HT2B receptor N terminus with a 5-HT2B receptor bearing a N-terminal deletion, we were able to restore original coupling. This reversion to normal activity of a truncated 5-HT2B receptor by coexpression of the membrane-tethered wild-type 5-HT2B receptor N terminus was not observed using a membrane-tethered 5-HT2B receptor R6G;E42G N terminus. These data suggest that the N terminus exerts a negative control over basal as well as agonist-stimulated receptor activity that is lost in the R6G;E42G mutant. Our findings reveal a new and unanticipated role of the 5-HT2B receptor N terminus as a negative modulator, affecting both constitutive and agonist-stimulated activity. Moreover, our data caution against excluding the N terminus and extracellular loops in structural studies of this 7 transmembrane receptor family
Resumo:
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by lung endothelial dysfunction and vascular remodeling. Recently, bone marrow progenitor cells have been localized to PAH lungs, raising the question of their role in disease progression. Independently, serotonin (5-HT) and its receptors have been identified as contributors to the PAH pathogenesis. We hypothesized that 1 of these receptors, 5-HT(2B), is involved in bone marrow stem cell mobilization that participates in the development of PAH and pulmonary vascular remodeling. A first study revealed expression of 5-HT(2B) receptors by circulating c-kit(+) precursor cells, whereas mice lacking 5-HT(2B) receptors showed alterations in platelets and monocyte-macrophage numbers, and in myeloid lineages of bone marrow. Strikingly, mice with restricted expression of 5-HT(2B) receptors in bone marrow cells developed hypoxia or monocrotaline-induced increase in pulmonary pressure and vascular remodeling, whereas restricted elimination of 5-HT(2B) receptors on bone marrow cells confers a complete resistance. Moreover, ex vivo culture of human CD34(+) or mice c-kit(+) progenitor cells in the presence of a 5-HT(2B) receptor antagonist resulted in altered myeloid differentiation potential. Thus, we demonstrate that activation of 5-HT(2B) receptors on bone marrow lineage progenitors is critical for the development of PAH.
Resumo:
Impulsivity, describing action without foresight, is an important feature of several psychiatric diseases, suicidality and violent behaviour. The complex origins of impulsivity hinder identification of the genes influencing it and the diseases with which it is associated. Here we perform exon-focused sequencing of impulsive individuals in a founder population, targeting fourteen genes belonging to the serotonin and dopamine domain. A stop codon in HTR2B was identified that is common (minor allele frequency > 1%) but exclusive to Finnish people. Expression of the gene in the human brain was assessed, as well as the molecular functionality of the stop codon, which was associated with psychiatric diseases marked by impulsivity in both population and family-based analyses. Knockout of Htr2b increased impulsive behaviours in mice, indicative of predictive validity. Our study shows the potential for identifying and tracing effects of rare alleles in complex behavioural phenotypes using founder populations, and indicates a role for HTR2B in impulsivity.
Resumo:
The now-banned anorectic molecule, dexfenfluramine, promotes serotonin release through a serotonin transporter-dependent mechanism, and it has been widely prescribed for the treatment of obesity. Previous studies have identified that 5-HT(2B) receptors have important roles in dexfenfluramine side effects, that is, pulmonary hypertension, plasma serotonin level regulation, and valvulopathy. We thus investigated a putative contribution of 5-HT(2B) receptors in dexfenfluramine-dependent feeding behavior in mice. Interestingly, the hypophagic response to dexfenfluramine (3-10 mg/kg) observed in wild-type mice (1-4 h) was eliminated in mice lacking 5-HT(2B) receptors (5-HT(2B)(-/-)). These findings were further validated by the lack of hypophagic response to dexfenfluramine in wild-type mice treated with RS127445, a highly selective and potent antagonist (pKi=8.22 ± 0.24). Using microdialysis, we observed that in 5-HT(2B)(-/-) awake mice, the dexfenfluramine-induced hypothalamic peak of serotonin release (1 h) was strongly reduced (fourfold) compared with wild type. Moreover, using hypothalamic synaptosomes, we established the serotonergic neuron autonomous properties of this effect: a strong serotonin release was observed upon dexfenfluramine stimulation of synaptosome preparation from wild type but not from mice lacking active 5-HT(2B) receptors. These findings strongly suggest that activation of presynaptic 5-HT(2B) receptors is a limiting step in the serotonin transporter dependent-releasing effect of dexfenfluramine, whereas other serotonin receptors act downstream with respect to feeding behavior.
Resumo:
Objective It has been suggested that adiponectin regulates plasma free fatty acid (FFA) clearance by stimulating FFA uptake and/or oxidation in muscle. We aimed to determine changes in plasma adiponectin concentration and adiponectin receptor 1 and 2 mRNA expression in skeletal muscle during and after prolonged exercise under normal, fasting conditions (high FFA trial; HFA) and following pharmacological inhibition of adipose tissue lipolysis (low FFA trial; LFA). Furthermore, we aimed to detect and locate adiponectin in skeletal muscle tissue. Methods Ten subjects performed two exercise trials (120 min at 50% VO2max). Indirect calorimetry was used to determine total fat oxidation rate. Plasma samples were collected at rest, during exercise and during post-exercise recovery to determine adiponectin, FFA and glycerol concentrations. Muscle biopsies were taken to determine adiponectin protein and adiponectin receptor 1 and 2 mRNA expression and to localise intramyocellular adiponectin. Results Basal plasma adiponectin concentrations averaged 6.57±0.7 and 6.63±0.8 mg/l in the HFA and LFA trials respectively, and did not change significantly during or after exercise. In the LFA trial, plasma FFA concentrations and total fat oxidation rates were substantially reduced. However, plasma adiponectin and muscle adiponectin receptor 1 and 2 mRNA expression did not differ between trials. Immunohistochemical staining of muscle cross-sections showed the presence of adiponectin in the sarcolemma of individual muscle fibres and within the interfibrillar arterioles. Conclusion Plasma adiponectin concentrations and adiponectin receptor 1 and 2 mRNA expression in muscle are not acutely regulated by changes in adipose tissue lipolysis and/or plasma FFA concentrations. Adiponectin is abundantly expressed in muscle, and, for the first time, it has been shown to be present in/on the sarcolemma of individual muscle fibres.
Resumo:
There is strong evidence to suggest that the combination of alcohol and chronic repetitive stress leads to long-lasting effects on brain function, specifically areas associated with stress, motivation and decision-making such as the amygdala, nucleus accumbens and prefrontal cortex. Alcohol and stress together facilitate the imprinting of long-lasting memories. The molecular mechanisms and circuits involved are being studied but are not fully understood. Current evidence suggests that corticosterone (animals) or cortisol (humans), in addition to direct transcriptional effects on the genome, can directly regulate pre- and postsynaptic synaptic transmission through membrane bound glucocorticoid receptors (GR). Indeed, corticosterone-sensitive synaptic receptors may be critical sites for stress regulation of synaptic responses. Direct modulation of synaptic transmission by corticosterone may contribute to the regulation of synaptic plasticity and memory during stress (Johnson et al., 2005; Prager et al., 2010). Specifically, previous data has shown that long term alcohol (1) increases the expression of NR2Bcontaining NMDA receptors at glutamate synapses, (2) changes receptor density, and (3) changes morphology of dendritic spines (Prendergast and Mulholland; 2012). During alcohol withdrawal these changes are associated with increased glucocorticoid signalling and increased neuronal excitability. It has therefore been proposed that these synapse changes lead to the anxiety and alcohol craving associated with withdrawal (Prendergast and Mulholland; 2012). My lab is targeting this receptor system and the amygdala in order to understand the effect of combining alcohol and stress on these pathways. Lastly, we are testing GR specific compounds as potential new medications to promote the development of resilience to developing addiction.
Resumo:
The basolateral amygdala (BLA) is a complex brain region associated with processing emotional states, such as fear, anxiety, and stress. Some aspects of these emotional states are driven by the network activity of synaptic connections, derived from both local circuitry and projections to the BLA from other regions. Although the synaptic physiology and general morphological characteristics are known for many individual cell types within the BLA, the combination of morphological, electrophysiological, and distribution of neurochemical GABAergic synapses in a three-dimensional neuronal arbor has not been reported for single neurons from this region. The aim of this study was to assess differences in morphological characteristics of BLA principal cells and interneurons, quantify the distribution of GABAergic neurochemical synapses within the entire neuronal arbor of each cell type, and determine whether GABAergic synaptic density correlates with electrophysiological recordings of inhibitory postsynaptic currents. We show that BLA principal neurons form complex dendritic arborizations, with proximal dendrites having fewer spines but higher densities of neurochemical GABAergic synapses compared with distal dendrites. Furthermore, we found that BLA interneurons exhibited reduced dendritic arbor lengths and spine densities but had significantly higher densities of putative GABAergic synapses compared with principal cells, which was correlated with an increased frequency of spontaneous inhibitory postsynaptic currents. The quantification of GABAergic connectivity, in combination with morphological and electrophysiological measurements of the BLA cell types, is the first step toward a greater understanding of how fear and stress lead to changes in morphology, local connectivity, and/or synaptic reorganization of the BLA.