41 resultados para Aquifers.
em Queensland University of Technology - ePrints Archive
Resumo:
The Lockyer Valley in southeast Queensland, Australia, hosts an economically significant alluvial aquifer system which has been impacted by prolonged drought conditions (~1997 to ~ 2009). Throughout this time, the system was under continued groundwater extraction, resulting in severe aquifer depletion. By 2008, much of the aquifer was at <30% of storage but some relief occurred with rains in early 2009. However, between December 2010 and January 2011, most of southeast Queensland experienced unprecedented flooding, which generated significant aquifer recharge. In order to understand the spatial and temporal controls of groundwater recharge in the alluvium, a detailed 3D lithological property model of gravels, sands and clays was developed using GOCAD software. The spatial distribution of recharge throughout the catchment was assessed using hydrograph data from about 400 groundwater observation wells screened at the base of the alluvium. Water levels from these bores were integrated into a catchment-wide 3D geological model using the 3D geological modelling software GOCAD; the model highlights the complexity of recharge mechanisms. To support this analysis, groundwater tracers (e.g. major and minor ions, stable isotopes, 3H and 14C) were used as independent verification. The use of these complementary methods has allowed the identification of zones where alluvial recharge primarily occurs from stream water during episodic flood events. However, the study also demonstrates that in some sections of the alluvium, rainfall recharge and discharge from the underlying basement into the alluvium are the primary recharge mechanisms of the alluvium. This is indicated by the absence of any response to the flood, as well as the observed old radiocarbon ages and distinct basement water chemistry signatures at these locations. Within the 3D geological model, integration of water chemistry and time-series displays of water level surfaces before and after the flood suggests that the spatial variations of the flood response in the alluvium are primarily controlled by the valley morphology and lithological variations within the alluvium. The integration of time-series of groundwater level surfaces in the 3D geological model also enables the quantification of the volumetric change of groundwater stored in the unconfined sections of this alluvial aquifer during drought and following flood events. The 3D representation and analysis of hydraulic and recharge information has considerable advantages over the traditional 2D approach. For example, while many studies focus on singular aspects of catchment dynamics and groundwater-surface water interactions, the 3D approach is capable of integrating multiple types of information (topography, geological, hydraulic, water chemistry and spatial) into a single representation which provides valuable insights into the major factors controlling aquifer processes.
Resumo:
A detailed 3D lithological model framework was developed using GOCAD software to understand interactions between alluvial, volcanic and GAB aquifers and the spatial and temporal distribution of groundwater recharge to the alluvium of the Lockyer Valley. Groundwater chemistry, isotope data (H20-δ2H and δ18O , 87Sr/86Sr, 3H and 14C) and groundwater level time-series data from approximately 550 observation wells were integrated into the catchment-wide 3D model to assess the recharge processes involved. This approach enabled the identification of zones where recharge to the alluvium primarily occurs from stream water during episodic flood events. Importantly, the study also demonstrates that in some sections of the alluvium recharge is also from storm rainfall and seepage discharge from the underlying GAB aquifers. These other sources of recharge are indicated by (a) the absence of a response of groundwater levels to flooding in some areas, (b) old radiocarbon ages, and (c) distinct bedrock water chemistry and δ2H and δ18O signatures in alluvial groundwater at these locations. Integration of isotopes, water chemistry and time-series displays of groundwater levels before and after the 2010/2011 flood into the 3D model suggest that the spatial variations in the alluvial groundwater response are mostly controlled by valley morphology and lithological (i.e. permeability) variations within the alluvium. Examination of the groundwater level variations in the 3D model also enabled quantification of the volumetric change of groundwater stored in the unconfined alluvial aquifer prior to and post-flood events.
Resumo:
The objective of this PhD research program is to investigate numerical methods for simulating variably-saturated flow and sea water intrusion in coastal aquifers in a high-performance computing environment. The work is divided into three overlapping tasks: to develop an accurate and stable finite volume discretisation and numerical solution strategy for the variably-saturated flow and salt transport equations; to implement the chosen approach in a high performance computing environment that may have multiple GPUs or CPU cores; and to verify and test the implementation. The geological description of aquifers is often complex, with porous materials possessing highly variable properties, that are best described using unstructured meshes. The finite volume method is a popular method for the solution of the conservation laws that describe sea water intrusion, and is well-suited to unstructured meshes. In this work we apply a control volume-finite element (CV-FE) method to an extension of a recently proposed formulation (Kees and Miller, 2002) for variably saturated groundwater flow. The CV-FE method evaluates fluxes at points where material properties and gradients in pressure and concentration are consistently defined, making it both suitable for heterogeneous media and mass conservative. Using the method of lines, the CV-FE discretisation gives a set of differential algebraic equations (DAEs) amenable to solution using higher-order implicit solvers. Heterogeneous computer systems that use a combination of computational hardware such as CPUs and GPUs, are attractive for scientific computing due to the potential advantages offered by GPUs for accelerating data-parallel operations. We present a C++ library that implements data-parallel methods on both CPU and GPUs. The finite volume discretisation is expressed in terms of these data-parallel operations, which gives an efficient implementation of the nonlinear residual function. This makes the implicit solution of the DAE system possible on the GPU, because the inexact Newton-Krylov method used by the implicit time stepping scheme can approximate the action of a matrix on a vector using residual evaluations. We also propose preconditioning strategies that are amenable to GPU implementation, so that all computationally-intensive aspects of the implicit time stepping scheme are implemented on the GPU. Results are presented that demonstrate the efficiency and accuracy of the proposed numeric methods and formulation. The formulation offers excellent conservation of mass, and higher-order temporal integration increases both numeric efficiency and accuracy of the solutions. Flux limiting produces accurate, oscillation-free solutions on coarse meshes, where much finer meshes are required to obtain solutions with equivalent accuracy using upstream weighting. The computational efficiency of the software is investigated using CPUs and GPUs on a high-performance workstation. The GPU version offers considerable speedup over the CPU version, with one GPU giving speedup factor of 3 over the eight-core CPU implementation.
Resumo:
This paper presents a methodology for determining the vertical hydraulic conductivity (Kv) of an aquitard, in a multilayered leaky system, based on the harmonic analysis of arbitrary water-level fluctuations in aquifers. As a result, Kv of the aquitard is expressed as a function of the phase-shift of water-level signals measured in the two adjacent aquifers. Based on this expression, we propose a robust method to calculate Kv by employing linear regression analysis of logarithm transformed frequencies and phases. The frequencies, where the Kv are calculated, are identified by coherence analysis. The proposed methods are validated by a synthetic case study and are then applied to the Westbourne and Birkhead aquitards, which form part of a five-layered leaky system in the Eromanga Basin, Australia.
Resumo:
Successful prediction of groundwater flow and solute transport through highly heterogeneous aquifers has remained elusive due to the limitations of methods to characterize hydraulic conductivity (K) and generate realistic stochastic fields from such data. As a result, many studies have suggested that the classical advective-dispersive equation (ADE) cannot reproduce such transport behavior. Here we demonstrate that when high-resolution K data are used with a fractal stochastic method that produces K fields with adequate connectivity, the classical ADE can accurately predict solute transport at the macrodispersion experiment site in Mississippi. This development provides great promise to accurately predict contaminant plume migration, design more effective remediation schemes, and reduce environmental risks. Key Points Non-Gaussian transport behavior at the MADE site is unraveledADE can reproduce tracer transport in heterogeneous aquifers with no calibrationNew fractal method generates heterogeneous K fields with adequate connectivity
Resumo:
Inter-aquifer mixing studies are usually made carrying out hydrochemical and isotopic techniques only. In this thesis these techniques have been integrated with three-dimensional geological modelling proving to be a better approach for inter—aquifer mixing assessment in regional areas, and also highlighting the influence of faulting in the understanding of groundwater and gas migration, which could not be possible using the two fist techniques alone. The results are of particular interest for coal seam gas basins and can even be used as exploration tools as areas of higher permeability and gas migration were identified.
Resumo:
The equations governing saltwater intrusion in coastal aquifers are complex. Backward Euler time stepping approaches are often used to advance the solution to these equations in time, which typically requires that small time steps be taken in order to ensure that an accurate solution is obtained. We show that a method of lines approach incorporating variable order backward differentiation formulas can greatly improve the efficiency of the time stepping process.
Resumo:
Texture based techniques for visualisation of unsteady vector fields have been applied for the visualisation of a Finite volume model for variably saturated groundwater flow through porous media. This model has been developed by staff in the School of Mathematical Sciences QUT for the study of salt water intrusion into coastal aquifers. This presentation discusses the implementation and effectiveness of the IBFV algorithm in the context of visualisation of the groundwater simulation outputs.
Resumo:
Extensive groundwater withdrawal has resulted in a severe seawater intrusion problem in the Gooburrum aquifers at Bundaberg, Queensland, Australia. Better management strategies can be implemented by understanding the seawater intrusion processes in those aquifers. To study the seawater intrusion process in the region, a two-dimensional density-dependent, saturated and unsaturated flow and transport computational model is used. The model consists of a coupled system of two non-linear partial differential equations. The first equation describes the flow of a variable-density fluid, and the second equation describes the transport of dissolved salt. A two-dimensional control volume finite element model is developed for simulating the seawater intrusion into the heterogeneous aquifer system at Gooburrum. The simulation results provide a realistic mechanism by which to study the convoluted transport phenomena evolving in this complex heterogeneous coastal aquifer.
Resumo:
Visualisation provides a method to efficiently convey and understand the complex nature and processes of groundwater systems. This technique has been applied to the Lockyer Valley to aid in comprehending the current condition of the system. The Lockyer Valley in southeast Queensland hosts intensive irrigated agriculture sourcing groundwater from alluvial aquifers. The valley is around 3000 km2 in area and the alluvial deposits are typically 1-3 km wide and to 20-35 m deep in the main channels, reducing in size in subcatchments. The configuration of the alluvium is of a series of elongate “fingers”. In this roughly circular valley recharge to the alluvial aquifers is largely from seasonal storm events, on the surrounding ranges. The ranges are overlain by basaltic aquifers of Tertiary age, which overall are quite transmissive. Both runoff from these ranges and infiltration into the basalts provided ephemeral flow to the streams of the valley. Throughout the valley there are over 5,000 bores extracting alluvial groundwater, plus lesser numbers extracting from underlying sandstone bedrock. Although there are approximately 2500 monitoring bores, the only regularly monitored area is the formally declared management zone in the lower one third. This zone has a calibrated Modflow model (Durick and Bleakly, 2000); a broader valley Modflow model was developed in 2002 (KBR), but did not have extensive extraction data for detailed calibration. Another Modflow model focused on a central area river confluence (Wilson, 2005) with some local production data and pumping test results. A recent subcatchment simulation model incorporates a network of bores with short-period automated hydrographic measurements (Dvoracek and Cox, 2008). The above simulation models were all based on conceptual hydrogeological models of differing scale and detail.
Resumo:
Climate change effects are expected to substantially raise the average sea level. It is widely assumed that this raise will have a severe adverse impact on saltwater intrusion processes in coastal aquifers. In this study we hypothesize that a natural mechanism, identified as the “lifting process” has the potential to mitigate or in some cases completely reverse the adverse intrusion effects induced by sea-level rise. A detailed numerical study using the MODFLOW-family computer code SEAWAT, was completed to test this hypothesis and to understand the effects of this lifting process in both confined and unconfined systems. Our conceptual simulation results show that if the ambient recharge remains constant, the sea-level rise will have no long-term impact (i.e., it will not affect the steady-state salt wedge) on confined aquifers. Our transient confined flow simulations show a self-reversal mechanism where the wedge which will initially intrude into the formation due to the sea-level rise would be naturally driven back to the original position. In unconfined systems, the lifting process would have a lesser influence due to changes in the value of effective transmissivity. A detailed sensitivity analysis was also completed to understand the sensitivity of this self-reversal effect to various aquifer parameters.
Resumo:
The use of stable isotope ratios δ18O and δ2H are well established in assessment of groundwater systems and their hydrology. The conventional approach is based on x/y plots and relation to various MWL’s, and plots of either ratio against parameters such as Clor EC. An extension of interpretation is the use of 2D maps and contour plots, and 2D hydrogeological vertical sections. An enhancement of presentation and interpretation is the production of “isoscapes”, usually as 2.5D surface projections. We have applied groundwater isotopic data to a 3D visualisation, using the alluvial aquifer system of the Lockyer Valley. The 3D framework is produced in GVS (Groundwater Visualisation System). This format enables enhanced presentation by displaying the spatial relationships and allowing interpolation between “data points” i.e. borehole screened zones where groundwater enters. The relative variations in the δ18O and δ2H values are similar in these ambient temperature systems. However, δ2H better reflects hydrological processes, whereas δ18O also reflects aquifer/groundwater exchange reactions. The 3D model has the advantage that it displays borehole relations to spatial features, enabling isotopic ratios and their values to be associated with, for example, bedrock groundwater mixing, interaction between aquifers, relation to stream recharge, and to near-surface and return irrigation water evaporation. Some specific features are also shown, such as zones of leakage of deeper groundwater (in this case with a GAB signature). Variations in source of recharging water at a catchment scale can be displayed. Interpolation between bores is not always possible depending on numbers and spacing, and by elongate configuration of the alluvium. In these cases, the visualisation uses discs around the screens that can be manually expanded to test extent or intersections. Separate displays are used for each of δ18O and δ2H and colour coding for isotope values.
Resumo:
The Lockyer Valley in southeast Queensland supports important and intensive irrigation which is dependant on the quality and availability of groundwater. Prolonged drought conditions from ~1997 resulted in a depletion of the alluvial aquifers, and concern for the long-term sustainability of this resource. By 2008, many areas of the valley were at < 20% of storage. Some relief occurred with rain events in early 2009, then in December 2010 - January 2011, most of southeast Queensland experienced unprecedented flooding. These storm-based events have caused a shift in research focus from investigations of drought conditions and mitigation to flood response analysis. For the alluvial aquifer system of the valley, a preliminary assessment of groundwater observation bore data, prior to and during the flood, indicates that there is a spatially variable aquifer response. While water levels in some bores screened in unconfined shallow aquifers have recovered by more than 10 m within a short period of time (months), others show only a small or moderate response. Measurements of pre- and post-flood groundwater levels and high-resolution time-series records from data loggers are considered within the framework of a 3D geological model of the Lockyer Valley using Groundwater Visualisation System(GVS). Groundwater level fluctuations covering both drought and flood periods are used to estimate groundwater recharge using the water table fluctuation method (WTF), supplemented by estimates derived using chloride mass balance. The presentation of hydraulic and recharge information in a 3D format has considerable advantages over the traditional 2D presentation of data. The 3D approach allows the distillation of multiple types of information(topography, geological, hydraulic and spatial) into one representation that provides valuable insights into the major controls of groundwater flow and recharge. The influence of aquifer lithology on the spatial variability of groundwater recharge is also demonstrated.