738 resultados para Approximate Model Checking

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this research we modelled computer network devices to ensure their communication behaviours meet various network standards. By modelling devices as finite-state machines and examining their properties in a range of configurations, we discovered a flaw in a common network protocol and produced a technique to improve organisations' network security against data theft.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper establishes a practical stability result for discrete-time output feedback control involving mismatch between the exact system to be stabilised and the approximating system used to design the controller. The practical stability is in the sense of an asymptotic bound on the amount of error bias introduced by the model approximation, and is established using local consistency properties of the systems. Importantly, the practical stability established here does not require the approximating system to be of the same model type as the exact system. Examples are presented to illustrate the nature of our practical stability result.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the Bayesian framework a standard approach to model criticism is to compare some function of the observed data to a reference predictive distribution. The result of the comparison can be summarized in the form of a p-value, and it's well known that computation of some kinds of Bayesian predictive p-values can be challenging. The use of regression adjustment approximate Bayesian computation (ABC) methods is explored for this task. Two problems are considered. The first is the calibration of posterior predictive p-values so that they are uniformly distributed under some reference distribution for the data. Computation is difficult because the calibration process requires repeated approximation of the posterior for different data sets under the reference distribution. The second problem considered is approximation of distributions of prior predictive p-values for the purpose of choosing weakly informative priors in the case where the model checking statistic is expensive to compute. Here the computation is difficult because of the need to repeatedly sample from a prior predictive distribution for different values of a prior hyperparameter. In both these problems we argue that high accuracy in the computations is not required, which makes fast approximations such as regression adjustment ABC very useful. We illustrate our methods with several samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We define a semantic model for purpose, based on which purpose-based privacy policies can be meaningfully expressed and enforced in a business system. The model is based on the intuition that the purpose of an action is determined by its situation among other inter-related actions. Actions and their relationships can be modeled in the form of an action graph which is based on the business processes in a system. Accordingly, a modal logic and the corresponding model checking algorithm are developed for formal expression of purpose-based policies and verifying whether a particular system complies with them. It is also shown through various examples, how various typical purpose-based policies as well as some new policy types can be expressed and checked using our model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a modified approach to evaluate access control policy similarity and dissimilarity based on the proposal by Lin et al. (2007). Lin et al.'s policy similarity approach is intended as a filter stage which identifies similar XACML policies that can be analysed further using more computationally demanding techniques based on model checking or logical reasoning. This paper improves the approach of computing similarity of Lin et al. and also proposes a mechanism to calculate a dissimilarity score by identifying related policies that are likely to produce different access decisions. Departing from the original algorithm, the modifications take into account the policy obligation, rule or policy combining algorithm and the operators between attribute name and value. The algorithms are useful in activities involving parties from multiple security domains such as secured collaboration or secured task distribution. The algorithms allow various comparison options for evaluating policies while retaining control over the restriction level via a number of thresholds and weight factors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper makes a formal security analysis of the current Australian e-passport implementation using model checking tools CASPER/CSP/FDR. We highlight security issues in the current implementation and identify new threats when an e-passport system is integrated with an automated processing system like SmartGate. The paper also provides a security analysis of the European Union (EU) proposal for Extended Access Control (EAC) that is intended to provide improved security in protecting biometric information of the e-passport bearer. The current e-passport specification fails to provide a list of adequate security goals that could be used for security evaluation. We fill this gap; we present a collection of security goals for evaluation of e-passport protocols. Our analysis confirms existing security weaknesses that were previously identified and shows that both the Australian e-passport implementation and the EU proposal fail to address many security and privacy aspects that are paramount in implementing a secure border control mechanism. ACM Classification C.2.2 (Communication/Networking and Information Technology – Network Protocols – Model Checking), D.2.4 (Software Engineering – Software/Program Verification – Formal Methods), D.4.6 (Operating Systems – Security and Privacy Protection – Authentication)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper provides a detailed description of the current Australian e-passport implementation and makes a formal verification using model checking tools CASPER/CSP/FDR. We highlight security issues present in the current e-passport implementation and identify new threats when an e-passport system is integrated with an automated processing systems like SmartGate. Because the current e-passport specification does not provide adequate security goals, to perform a rational security analysis we identify and describe a set of security goals for evaluation of e-passport protocols. Our analysis confirms existing security issues that were previously informally identified and presents weaknesses that exists in the current e-passport implementation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Big Datasets are endemic, but they are often notoriously difficult to analyse because of their size, heterogeneity, history and quality. The purpose of this paper is to open a discourse on the use of modern experimental design methods to analyse Big Data in order to answer particular questions of interest. By appealing to a range of examples, it is suggested that this perspective on Big Data modelling and analysis has wide generality and advantageous inferential and computational properties. In particular, the principled experimental design approach is shown to provide a flexible framework for analysis that, for certain classes of objectives and utility functions, delivers near equivalent answers compared with analyses of the full dataset under a controlled error rate. It can also provide a formalised method for iterative parameter estimation, model checking, identification of data gaps and evaluation of data quality. Finally, it has the potential to add value to other Big Data sampling algorithms, in particular divide-and-conquer strategies, by determining efficient sub-samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since their inception in 1962, Petri nets have been used in a wide variety of application domains. Although Petri nets are graphical and easy to understand, they have formal semantics and allow for analysis techniques ranging from model checking and structural analysis to process mining and performance analysis. Over time Petri nets emerged as a solid foundation for Business Process Management (BPM) research. The BPM discipline develops methods, techniques, and tools to support the design, enactment, management, and analysis of operational business processes. Mainstream business process modeling notations and workflow management systems are using token-based semantics borrowed from Petri nets. Moreover, state-of-the-art BPM analysis techniques are using Petri nets as an internal representation. Users of BPM methods and tools are often not aware of this. This paper aims to unveil the seminal role of Petri nets in BPM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Approximate clone detection is the process of identifying similar process fragments in business process model collections. The tool presented in this paper can efficiently cluster approximate clones in large process model repositories. Once a repository is clustered, users can filter and browse the clusters using different filtering parameters. Our tool can also visualize clusters in the 2D space, allowing a better understanding of clusters and their member fragments. This demonstration will be useful for researchers and practitioners working on large process model repositories, where process standardization is a critical task for increasing the consistency and reducing the complexity of the repository.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a novel approach for developing summary statistics for use in approximate Bayesian computation (ABC) algorithms using indirect infer- ence. We embed this approach within a sequential Monte Carlo algorithm that is completely adaptive. This methodological development was motivated by an application involving data on macroparasite population evolution modelled with a trivariate Markov process. The main objective of the analysis is to compare inferences on the Markov process when considering two di®erent indirect mod- els. The two indirect models are based on a Beta-Binomial model and a three component mixture of Binomials, with the former providing a better ¯t to the observed data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Approximate Bayesian Computation’ (ABC) represents a powerful methodology for the analysis of complex stochastic systems for which the likelihood of the observed data under an arbitrary set of input parameters may be entirely intractable – the latter condition rendering useless the standard machinery of tractable likelihood-based, Bayesian statistical inference [e.g. conventional Markov chain Monte Carlo (MCMC) simulation]. In this paper, we demonstrate the potential of ABC for astronomical model analysis by application to a case study in the morphological transformation of high-redshift galaxies. To this end, we develop, first, a stochastic model for the competing processes of merging and secular evolution in the early Universe, and secondly, through an ABC-based comparison against the observed demographics of massive (Mgal > 1011 M⊙) galaxies (at 1.5 < z < 3) in the Cosmic Assembly Near-IR Deep Extragalatic Legacy Survey (CANDELS)/Extended Groth Strip (EGS) data set we derive posterior probability densities for the key parameters of this model. The ‘Sequential Monte Carlo’ implementation of ABC exhibited herein, featuring both a self-generating target sequence and self-refining MCMC kernel, is amongst the most efficient of contemporary approaches to this important statistical algorithm. We highlight as well through our chosen case study the value of careful summary statistic selection, and demonstrate two modern strategies for assessment and optimization in this regard. Ultimately, our ABC analysis of the high-redshift morphological mix returns tight constraints on the evolving merger rate in the early Universe and favours major merging (with disc survival or rapid reformation) over secular evolution as the mechanism most responsible for building up the first generation of bulges in early-type discs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Analytically or computationally intractable likelihood functions can arise in complex statistical inferential problems making them inaccessible to standard Bayesian inferential methods. Approximate Bayesian computation (ABC) methods address such inferential problems by replacing direct likelihood evaluations with repeated sampling from the model. ABC methods have been predominantly applied to parameter estimation problems and less to model choice problems due to the added difficulty of handling multiple model spaces. The ABC algorithm proposed here addresses model choice problems by extending Fearnhead and Prangle (2012, Journal of the Royal Statistical Society, Series B 74, 1–28) where the posterior mean of the model parameters estimated through regression formed the summary statistics used in the discrepancy measure. An additional stepwise multinomial logistic regression is performed on the model indicator variable in the regression step and the estimated model probabilities are incorporated into the set of summary statistics for model choice purposes. A reversible jump Markov chain Monte Carlo step is also included in the algorithm to increase model diversity for thorough exploration of the model space. This algorithm was applied to a validating example to demonstrate the robustness of the algorithm across a wide range of true model probabilities. Its subsequent use in three pathogen transmission examples of varying complexity illustrates the utility of the algorithm in inferring preference of particular transmission models for the pathogens.