101 resultados para Anticancer agents
em Queensland University of Technology - ePrints Archive
Resumo:
Microtubules (MTs) play important and diverse roles in eukaryotic cells. Their function and biophysical properties have made α−and β−tubulin, the main components of MTs, the subject of intense study. Interfering with normal MT dynamics, for example, by the addition of tubulin ligands, can cause the cell great distress and affect MT stability and functions, including mitosis, cell motion and intracellular organelle transport. It has been shown in the literature that tubulin is an important target molecule for developing anticancer drugs. Tubulin binding molecules have generated considerable interest after the successful introduction of the taxanes into clinical oncology and the widespread use of the vinca alkaloids vincristine and vinblastine. These compounds inhibit cell mitosis by binding to the protein tubulin in the mitotic spindle and preventing polymerization into the MTs. This mode of action is also shared with other natural agents eg colchicine and podophyllotoxin. However various tubulin isotypes have shown resistance to taxanes and other MT agents. Therefore, there is a strong need to design and develop new natural analogs as antimitotic agents to interact with tubulin at sites different from those of vinca alkaloids and taxanes. This minireview provides SAR on several classes of antimitotic agents reported in the literature. The structures and data given are essential to the scientists who are involved in drug design and development in the field of anticancer drugs.
Resumo:
CoMFA and CoMSIA analysis were utilized in this investigation to define the important interacting regions in paclitaxel/tubulin binding site and to develop selective paclitaxel-like active compounds. The starting geometry of paclitaxel analogs was taken from the crystal structure of docetaxel. A total of 28 derivatives of paclitaxel were divided into two groups—a training set comprising of 19 compounds and a test set comprising of nine compounds. They were constructed and geometrically optimized using SYBYL v6.6. CoMFA studies provided a good predictability (q2 = 0.699, r2 = 0.991, PC = 6, S.E.E. = 0.343 and F = 185.910). They showed the steric and electrostatic properties as the major interacting forces whilst the lipophilic property contribution was a minor factor for recognition forces of the binding site. These results were in agreement with the experimental data of the binding activities of these compounds. Five fields in CoMSIA analysis (steric, electrostatic, hydrophobic, hydrogen-bond acceptor and donor properties) were considered contributors in the ligand–receptor interactions. The results obtained from the CoMSIA studies were: q2 = 0.535, r2 = 0.983, PC = 5, S.E.E. = 0.452 and F = 127.884. The data obtained from both CoMFA and CoMSIA studies were interpreted with respect to the paclitaxel/tubulin binding site. This intuitively suggested where the most significant anchoring points for binding affinity are located. This information could be used for the development of new compounds having paclitaxel-like activity with new chemical entities to overcome the existing pharmaceutical barriers and the economical problem associated with the synthesis of the paclitaxel analogs. These will boost the wide use of this useful class of compounds, i.e. in brain tumors as the most of the present active compounds have poor blood–brain barrier crossing ratios and also, various tubulin isotypes has shown resistance to taxanes and other antimitotic agents.
Resumo:
Damage to genetic material represents a persistent and ubiquitous threat to genomic stability. Once DNA damage is detected, a multifaceted signaling network is activated that halts the cell cycle, initiates repair, and in some instances induces apoptotic cell death. In this article, we will review DNA damage surveillance networks, which maintain the stability of our genome, and discuss the efforts underway to identify chemotherapeutic compounds targeting the core components of DNA double-strand breaks (DSB) response pathway. The majority of tumor cells have defects in maintaining genomic stability owing to the loss of an appropriate response to DNA damage. New anticancer agents are exploiting this vulnerability of cancer cells to enhance therapeutic indexes, with limited normal tissue toxicity. Recently inhibitors of the checkpoint kinases Chk1 and Chk2 have been shown to sensitize tumor cells to DNA damaging agents. In addition, the treatment of BRCA1- or BRCA2-deficient tumor cells with poly(ADP-ribose) polymerase (PARP) inhibitors also leads to specific tumor killing. Due to the numerous roles of p53 in genomic stability and its defects in many human cancers, therapeutic agents that restore p53 activity in tumors are the subject of multiple clinical trials. In this article we highlight the proteins mentioned above and catalog several additional players in the DNA damage response pathway, including ATM, DNA-PK, and the MRN complex, which might be amenable to pharmacological interventions and lead to new approaches to sensitize cancer cells to radio- and chemotherapy. The challenge is how to identify those patients most receptive to these treatments.
Resumo:
Cisplatin is one of the most potent anticancer agents, displaying significant clinical activity against a variety of solid tumours. To date, cisplatin-based combination treatment remains the most effective systemic chemotherapy for non-small cell lung cancer (NSCLC) patients. Unfortunately, the outcome of cisplatin therapy in NSCLC has reached a plateau due to the development of both intrinsic and acquired resistance that have become a major obstacle in the use of cisplatin in the clinical setting. The molecular mechanisms that underlie chemoresistance are largely unknown. Mechanisms of acquired resistance to cisplatin include reduced intracellular accumulation of the drug, enhanced drug inactivation by metallothionine and glutathione, increased repair activity of DNA damage, and altered expression of oncogenes and regulatory proteins. Cisplatin-induced cytotoxicity is mediated through the induction of apoptosis and cell cycle arrest as a result of cisplatin-DNA adduct formation, which in turn, activates multiple signaling pathways and mediators. These include p53, Bcl-2 family, caspases, cyclins, CDKs, MAPK and PI3K/Akt. Increased expression of anti-apoptotic genes and mutations in the intrinsic apoptotic pathway may also contribute to the inability of cells to detect DNA damage or to induce apoptosis. This chapter will provide an insight into the mechanisms involved in cisplatin resistance and a better understanding of the molecular basis of the cellular response to cisplatin-based chemotherapy in lung cancer.
Resumo:
The ubiquitin (Ub)-proteasome pathway is the major nonlysosomal pathway of proteolysis in human cells and accounts for the degradation of most short-lived, misfolded or damaged proteins. This pathway is important in the regulation of a number of key biological regulatory mechanisms. Proteins are usually targeted for proteasome-mediated degradation by polyubiquitinylation, the covalent addition of multiple units of the 76 amino acid protein Ub, which are ligated to 1-amino groups of lysine residues in the substrate. Polyubiquitinylated proteins are degraded by the 26S proteasome, a large, ATP-dependent multicatalytic protease complex, which also regenerates monomeric Ub. The targets of this pathway include key regulators of cell proliferation and cell death. An alternative form of the proteasome, termed the immunoproteasome, also has important functions in the generation of peptides for presentation by MHC class I molecules. In recent years there has been a great deal of interest in the possibility that proteasome inhibitors, through elevation of the levels of proteasome targets, might prove useful as a novel class of anti-cancer drugs. Here we review the progress made to date in this area and highlight the potential advantages and weaknesses of this approach.
Resumo:
An introduction to anticancer drugs 24.1 Introduction 24.2 The rationale behind anticancer drug therapy 24.3 Drugs used in cancer 24.3.1 Alkylating agents 24.3.2 Cytotoxic antibiotics 24.3.3 Antimetabolites 24.3.4 Microtubule inhibitors 24.3.5 Monoclonal antibodies 24.3.6 Steroid hormones and their antagonists 24.3.7 Other treatments