11 resultados para Antígenos CD3

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Murine intestinal intraepithelial lymphocytes (IEL) have been shown to contain subsets of alpha/beta TCR+ and gamma/delta TCR+ T cells that spontaneously produce cytokines such as IFN-gamma and IL-5. We have now determined the nature and cell cycle stage of these cytokine-producing T lymphocytes in EIL by using IFN-gamma- and IL-5-specific ELISPOT assay, cytokine-specific mRNA-cDNA dot-blot hybridization and polymerase chain reaction, and flow cytometry (FACS) for DNA analysis. When CD3+ T cells from IEL of normal C3H/HeN mice were separated into low and high density fractions by discontinuous Percoll gradients, IFN-gamma and IL-5 spot-forming cells were only found in the former population. Analysis of mRNA for these cytokines by both IFN-gamma- and IL-5-specific dot-blot hybridization and polymerase chain reaction revealed that higher levels of message for IFN-gamma and IL-5 were also seen in the low density fraction. However, cell cycle analysis of these two fractions by FACS using propidium iodide showed a similar pattern of cell cycle stages in both low and high density populations (G0 + G1 approximately 96 to 98% and S/G2 + M approximately 2 to 4%). Finally, mRNA from gamma/delta TCR+ and alpha/beta TCR+ T cells in both low and high density fractions of IEL were analyzed for IFN-gamma and IL-5 message by polymerase chain reaction. After 35 cycles of amplification, both gamma/delta TCR+ and alpha/beta TCR+ T cells in the low density fraction expressed higher levels of message for these two cytokines when compared with the high density population. These results have now shown that both gamma/delta and alpha/beta TCR+ IEL can be separated into low and high density subsets and both fractions possess a similar stage of cell cycle. However, only the low density cells (in G1 phase) of both gamma/delta and alpha/beta TCR types possess increased cytokine-specific mRNA and produce the cytokines IFN-gamma and IL-5. Our results suggest that alpha/beta TCR+ and gamma/delta TCR+ IEL can produce cytokines without cell proliferation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changes in plasma zinc concentration and markers of immune function were examined in a group of 10 male runners (n = 10) following a moderate increase in training over four weeks. Seven sedentary males acted as controls. Fasting blood samples were taken at rest, before (T0) and after (T4) four weeks of increased (+ 16 %) training and after two weeks of reduced (-31 %) training (T6). Blood was analysed for plasma zinc concentration, differential leucocyte counts, lymphocyte subpopulations and lymphocyte proliferation using incorporation of 3H-thymidine. The runners increased their training volume by 16 % over the four weeks. When compared with the nonathletes, the runners had lower concentrations of plasma zinc (p = 0.012), CD3 + (p = 0.042) and CD19 + lymphocytes (p = 0.010) over the four weeks. Lymphocyte proliferation in response to Concanavalin A stimulation was greater in the runners (p = 0.0090). Plasma zinc concentration and immune markers remained constant during the study. Plasma zinc concentration correlated with total leucocyte counts in the athletes at T6 (r = -0.72, p < 0.05) and with Pokeweed mitogen stimulation in the nonathletes at T6 (r = -0.92, p < 0.05). Therefore, athletes are unlikely to benefit from zinc supplementation during periods of moderately increased training volume.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To identify a 15-KDa novel hypoxia-induced secreted protein in head and neck squamous cell carcinomas (HNSCC) and to determine its role in malignant progression. Methods: We used surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS) and tandem MS to identify a novel hypoxia-induced secreted protein in FaDu cells. We used immunoblots, real-time polymerase chain reaction (PCR), and enzyme-linked immunoabsorbent assay to confirm the hypoxic induction of this secreted protein as galectin-1 in cell lines and xenografts. We stained tumor tissues from 101 HNSCC patients for galectin-1, CA IX (carbonic anhydrase IX, a hypoxia marker) and CDS (a T-cell marker). Expression of these markers was correlated to each other and to treatment outcomes. Results: SELDI-TOF studies yielded a hypoxia-induced peak at 15 kDa that proved to be galectin-1 by MS analysis. Immunoblots and PCR studies confirmed increased galectin-1 expression by hypoxia in several cancer cell lines. Plasma levels of galectin-1 were higher in tumor-bearing severe combined immunodeficiency (SCID) mice breathing 10% O 2 compared with mice breathing room air. In HNSCC patients, there was a significant correlation between galectin-1 and CA IX staining (P = .01) and a strong inverse correlation between galectin-1 and CDS staining (P = .01). Expression of galectin-1 and CDS were significant predictors for overall survival on multivariate analysis. Conclusion: Galectin-1 is a novel hypoxia-regulated protein and a prognostic marker in HNSCC. This study presents a new mechanism on how hypoxia can affect the malignant progression and therapeutic response of solid tumors by regulating the secretion of proteins that modulate immune privilege. © 2005 by American Society of Clinical Oncology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ultraviolet photodissociation of gas-phase N-methylpyridinium ions is studied at room temperature using laser photodissociation mass spectrometry and structurally diagnostic ion-molecule reaction kinetics. The C5H5N-CH3+ (m/z 94), C5H5N-CD3+ (m/z 97), and C5D5N-CH3+(m/z 99) isotopologues are investigated, and it is shown that the N-methylpyridinium ion photodissociates by the loss of methane in the 36 000 - 43 000 cm(-1) (280 - 230 nm) region. The dissociation likely occurs on the ground state surface following internal conversion from the SI state. For each isotopologue, by monitoring the photofragmentation yield as a function of photon wavenumber, a broad vibronically featured band is recorded with origin (0-0) transitions assigned at 38 130, 38 140 and 38 320 cm(-1) for C5H5N-CH3+ C5H5N-CD3+ and C5D5N-CH3+, respectively. With the aid of quantum chemical calculations (CASSCF(6,6)/aug-cc-pVDZ), most of the observed vibronic detail is assigned to two in-plane ring deformation modes. Finally, using ion-molecule reactions, the methane coproduct at m/z 78 is confirmed as a 2-pyridinylium ion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytoreductive surgery and chemotherapy continue to be the mainstay of ovarian cancer treatment. However, as mortality from advanced ovarian cancer remains very high, novel therapies are required to be integrated into existing treatment regimens. Immunotherapy represents an alternative and rational therapeutic approach for ovarian cancer based on a body of evidence supporting a protective role of the immune system against these cancers, and on the clinical success of immunotherapy in other malignancies. Whether or not immunotherapy will have a role in the future management of ovarian cancer is too early to tell, but research in this field is active. This review will discuss recent clinical developments of selected immunotherapies for ovarian cancer which fulfil the following criteria: (i) they are antibody-based, (ii) target a distinct immunological pathway, and (iii) have reached the clinical trial stage. Specifically, the focus is on Catumaxomab (anti-EpCAM × anti-CD3), Abagovomab, Oregovomab (anti-CA125), Daclizumab (anti-CD25), Ipilimumab (anti-CTLA-4), and MXD-1105 (anti-PD-L1). Catumaxomab has reached phase III clinical trials and exhibits promise with reports, showing that it can cause a significant and sustained reduction in ascites. Phase I–III clinical trials continue to be conducted on the other antibodies, some of which have had encouraging reports. We will also provide our perspective on the future of immunotherapy for ovarian cancer, and how it may be best employed in treatment regimens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective Ankylosing spondylitis (AS) is a common inflammatory arthritis affecting primarily the axial skeleton. IL23R is genetically associated with AS. This study was undertaken to investigate and characterize the role of interleukin-23 (IL-23) signaling in AS pathogenesis. Methods The study population consisted of patients with active AS (n = 17), patients with psoriatic arthritis (n = 8), patients with rheumatoid arthritis, (n = 9), and healthy subjects (n = 20). IL-23 receptor (IL-23R) expression in T cells was determined in each subject group, and expression levels were compared. Results The proportion of IL-23R-expressing T cells in the periphery was 2-fold higher in AS patients than in healthy controls, specifically driven by a 3-fold increase in IL-23R-positive γ/δ T cells in AS patients. The proportions of CD4+ and CD8+ cells that were positive for IL-17 were unchanged. This increased IL-23R expression on γ/δ T cells was also associated with enhanced IL-17 secretion, with no observable IL-17 production from IL-23R-negative γ/δ T cells in AS patients. Furthermore, γ/δ T cells from AS patients were heavily skewed toward IL-17 production in response to stimulation with IL-23 and/or anti-CD3/CD28. Conclusion Recently, mouse models have shown IL-17-secreting γ/δ T cells to be pathogenic in infection and autoimmunity. Our data provide the first description of a potentially pathogenic role of these cells in a human autoimmune disease. Since IL-23 is a maturation and growth factor for IL-17-producing cells, increased IL-23R expression may regulate the function of this putative pathogenic γ/δ T cell population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective Spondyloarthritides (SpA) occur in 1% of the population and include ankylosing spondylitis (AS) and arthropathy of inflammatory bowel disease (IBD), with characteristic spondylitis, arthritis, enthesitis, and IBD. Genetic studies implicate interleukin-23 (IL-23) receptor signaling in the development of SpA and IBD, and IL-23 overexpression in mice is sufficient for enthesitis, driven by entheseal-resident T cells. However, in genetically prone individuals, it is not clear where IL-23 is produced and how it drives the SpA syndrome, including IBD or subclinical gut inflammation of AS. Moreover, it is unclear why specific tissue involvement varies between patients with SpA. We undertook this study to determine the location of IL-23 production and its role in SpA pathogenesis in BALB/c ZAP-70W163C-mutant (SKG) mice injected intraperitoneally with β-1,3-glucan (curdlan). Methods Eight weeks after curdlan injection in wild-type or IL-17A-/- SKG or BALB/c mice, pathology was scored in tissue sections. Mice were treated with anti-IL-23 or anti-IL-22. Cytokine production and endoplasmic reticulum (ER) stress were determined in affected organs. Results In curdlan-treated SKG mice, arthritis, enthesitis, and ileitis were IL-23 dependent. Enthesitis was specifically dependent on IL-17A and IL-22. IL-23 was induced in the ileum, where it amplified ER stress, goblet cell dysfunction, and proinflammatory cytokine production. IL-17A was pathogenic, while IL-22 was protective against ileitis. IL-22+CD3- innate-like cells were increased in lamina propria mononuclear cells of ileitis-resistant BALB/c mice, which developed ileitis after curdlan injection and anti-IL-22. Conclusion In response to systemic β-1,3-glucan, intestinal IL-23 provokes local mucosal dysregulation and cytokines driving the SpA syndrome, including IL-17/IL-22-dependent enthesitis. Innate IL-22 production promotes ileal tolerance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Despite the critical role of immunoglobulin E (IgE) in allergy, circulating IgE+ B cells are scarce. Here, we describe in patients with allergic rhinitis B cells with a memory phenotype responding to a prototypic aeroallergen. Methods Fifteen allergic rhinitis patients with grass pollen allergy and 13 control subjects were examined. Blood mononuclear cells stained with carboxyfluorescein diacetate succinimidyl ester (CFSE) were cultured with Bahia grass pollen. Proliferation and phenotype were assessed by multicolour flow cytometry. Results In blood of allergic rhinitis patients with high serum IgE to grass pollen, most IgEhi cells were CD123+ HLA-DR- basophils, with IgE for the major pollen allergen (Pas n 1). Both B and T cells from pollen-allergic donors showed higher proliferation to grass pollen than nonallergic donors (P = 0.002, and 0.010, respectively), whereas responses to vaccine antigens and mitogen did not differ between groups. Allergen-driven B cells that divided rapidly (CD19mid CD3- CFSElo) showed higher CD27 (P = 0.008) and lower CD19 (P = 0.004) and CD20 (P = 0.004) expression than B cells that were slow to respond to allergen (CD19hi CD3- CFSEmid). Moreover, rapidly dividing allergen-driven B cells (CD19mid CFSElo CD27hi) showed higher expression of the plasmablast marker CD38 compared with B cells (CD19hi CFSEmid CD27lo) that were slow to divide. Conclusion Patients with pollen allergy but not control donors have a population of circulating allergen-specific B cells with the phenotype and functional properties of adaptive memory B-cell responses. These cells could provide precursors for allergen-specific IgE production upon allergen re-exposure. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: IgE is the pivotal-specific effector molecule of allergic reactions yet it remains unclear whether the elevated production of IgE in atopic individuals is due to superantigen activation of B cell populations, increased antibody class switching to IgE or oligoclonal allergen-driven IgE responses. Objectives: To increase our understanding of the mechanisms driving IgE responses in allergic disease we examined immunoglobulin variable regions of IgE heavy chain transcripts from three patients with seasonal rhinitis due to grass pollen allergy. Methods: Variable domain of heavy chain-epsilon constant domain 1 cDNAs were amplified from peripheral blood using a two-step semi-nested PCR, cloned and sequenced. Results: The VH gene family usage in subject A was broadly based, but there were two clusters of sequences using genes VH 3-9 and 3-11 with unusually low levels of somatic mutations, 0-3%. Subject B repeatedly used VH 1-69 and subject C repeatedly used VH 1-02, 1-46 and 5a genes. Most clones were highly mutated being only 86-95% homologous to their germline VH gene counterparts and somatic mutations were more abundant at the complementarity determining rather than framework regions. Multiple sequence alignment revealed both repeated use of particular VH genes as well as clonal relatedness among clusters of IgE transcripts. Conclusion: In contrast to previous studies we observed no preferred VH gene common to IgE transcripts of the three subjects allergic to grass pollen. Moreover, most of the VH gene characteristics of the IgE transcripts were consistent with oligoclonal antigen-driven IgE responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major group of murine NK T (NKT) cells express an invariant Vα14Jα18 TCR α-chain specific for glycolipid Ags presented by CD1d. Murine Vα14Jα18+ account for 30–50% of hepatic T cells and have potent antitumor activities. We have enumerated and characterized their human counterparts, Vα24Vβ11+ NKT cells, freshly isolated from histologically normal and tumor-bearing livers. In contrast to mice, human NKT cells are found in small numbers in healthy liver (0.5% of CD3+ cells) and blood (0.02%). In contrast to those in blood, most hepatic Vα24+ NKT cells express the Vβ11 chain. They include CD4+, CD8+, and CD4−CD8− cells, and many express the NK cell markers CD56, CD161, and/or CD69. Importantly, human hepatic Vα24+ T cells are potent producers of IFN-γ and TNF-α, but not IL-2 or IL-4, when stimulated pharmacologically or with the NKT cell ligand, α-galactosylceramide. Vα24+Vβ11+ cell numbers are reduced in tumor-bearing compared with healthy liver (0.1 vs 0.5%; p < 0.04). However, hepatic cells from cancer patients and healthy donors release similar amounts of IFN-γ in response to α-galactosylceramide. These data indicate that hepatic NKT cell repertoires are phenotypically and functionally distinct in humans and mice. Depletions of hepatic NKT cell subpopulations may underlie the susceptibility to metastatic liver disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of host immunity on outcome in nonsmall cell lung cancer (NSCLC) is controversial. We examined the relationship between lymphoid infiltration patterns in NSCLC and prognosis. Tumour- and stroma-infiltrating CD3+, CD8+ and forkhead box P3 (Foxp3)+ T-lymphocytes were identified using immunohistochemistry and a novel image analysis algorithm to assess total, cytotoxic and regulatory T-lymphocyte counts, respectively, in 196 NSCLC cases. The median cell count was selected as a cut-point to define patient subgroups and the ratio of the corresponding tumour islet:stroma (TI/S) counts was determined. There was a positive association between overall survival and increased CD8+ TI/S ratio (hazard ratio (HR) for death 0.44, p<0.001) but an inverse relationship between Foxp3+ TI/S ratio and overall survival (HR 4.86, p<0.001). Patients with high CD8+ islet (HR 0.48, p<0.001) and Foxp3+ stromal (HR 0.23, p<0.001) counts had better survival, whereas high CD3+ and CD8+ stromal counts and high Foxp3+ islet infiltration conferred a worse survival (HR 1.55, 2.19 and 3.14, respectively). By multivariate analysis, a high CD8+ TI/S ratio conferred an improved survival (HR 0.48, p=0.002) but a high Foxp3+ TI/S ratio was associated with worse survival (HR 3.91, p<0.001). Microlocalisation of infiltrating T-lymphocytes is a powerful predictor of outcome in resected NSCLC.