591 resultados para Ameskar Valley, High Atlas Mountains
em Queensland University of Technology - ePrints Archive
Resumo:
A significant amount (ca. 15-25 GL/a) of PRW (Purified Recycled Water) from urban areas is foreseen as augmentation of the depleted groundwater resources of the Lockyer Valley (approx. 80 km west of Brisbane). Theresearch project uses field investigations, lab trials and modelling techniques to address the key challenges: (i) how to determine benefits of individual users from the augmentation of a natural common pool resource; (ii) how to minimise impacts of applying different quality water on the Lockyer soils, to creeks and on aquifier materials; (iii) how to minimuse mobilisation of salts in the unsaturated and saturated zones as a result of increased deep drainage; (iv) determination of potential for direct aquifer recharge using injection wells?
Resumo:
The Lockyer Valley, southeast Queensland, hosts intensive irrigated agriculture using groundwater from over 5000 alluvial bores. A current project is considering introduction of PRW (purified recycled water) to augment groundwater supplies. To assess this, a valley-wide MODFLOW simulation model is being developed plus a new unsaturated zone flow model. To underpin these models and provide a realistic understanding of the aquifer framework a 3D visualisation model has been developed using Groundwater Visualisation System (GVS) software produced at QUT.
Resumo:
Visualisation provides a method to efficiently convey and understand the complex nature and processes of groundwater systems. This technique has been applied to the Lockyer Valley to aid in comprehending the current condition of the system. The Lockyer Valley in southeast Queensland hosts intensive irrigated agriculture sourcing groundwater from alluvial aquifers. The valley is around 3000 km2 in area and the alluvial deposits are typically 1-3 km wide and to 20-35 m deep in the main channels, reducing in size in subcatchments. The configuration of the alluvium is of a series of elongate “fingers”. In this roughly circular valley recharge to the alluvial aquifers is largely from seasonal storm events, on the surrounding ranges. The ranges are overlain by basaltic aquifers of Tertiary age, which overall are quite transmissive. Both runoff from these ranges and infiltration into the basalts provided ephemeral flow to the streams of the valley. Throughout the valley there are over 5,000 bores extracting alluvial groundwater, plus lesser numbers extracting from underlying sandstone bedrock. Although there are approximately 2500 monitoring bores, the only regularly monitored area is the formally declared management zone in the lower one third. This zone has a calibrated Modflow model (Durick and Bleakly, 2000); a broader valley Modflow model was developed in 2002 (KBR), but did not have extensive extraction data for detailed calibration. Another Modflow model focused on a central area river confluence (Wilson, 2005) with some local production data and pumping test results. A recent subcatchment simulation model incorporates a network of bores with short-period automated hydrographic measurements (Dvoracek and Cox, 2008). The above simulation models were all based on conceptual hydrogeological models of differing scale and detail.
Resumo:
The upper Condamine River in southern Queensland has formed extensive alluvial deposits which have been used for irrigation of cotton crops for over 40 years. Due to excessive use and long term drought conditions these groundwater resources are under substantial threat. This condition is now recognised by all stakeholders, and Qld Department of Environment and Resource Management (DERM) are currently undertaking a water planning process for the Central Condamine Alluvium with water users and other stakeholders. DERM aims to effectively demonstrate the character of the groundwater system and its current status, and notably the continued long-term drawdown of the watertable. It was agreed that 3D visualisation was an ideal tool to achieve this. The Groundwater Visualisation System (GVS) developed at QUT was utilised and the visualisation model developed in conjunction with DERM to achieve a planning-management tool for this particular application
Resumo:
The use of stable isotope ratios δ18O and δ2H are well established in assessment of groundwater systems and their hydrology. The conventional approach is based on x/y plots and relation to various MWL’s, and plots of either ratio against parameters such as Clor EC. An extension of interpretation is the use of 2D maps and contour plots, and 2D hydrogeological vertical sections. An enhancement of presentation and interpretation is the production of “isoscapes”, usually as 2.5D surface projections. We have applied groundwater isotopic data to a 3D visualisation, using the alluvial aquifer system of the Lockyer Valley. The 3D framework is produced in GVS (Groundwater Visualisation System). This format enables enhanced presentation by displaying the spatial relationships and allowing interpolation between “data points” i.e. borehole screened zones where groundwater enters. The relative variations in the δ18O and δ2H values are similar in these ambient temperature systems. However, δ2H better reflects hydrological processes, whereas δ18O also reflects aquifer/groundwater exchange reactions. The 3D model has the advantage that it displays borehole relations to spatial features, enabling isotopic ratios and their values to be associated with, for example, bedrock groundwater mixing, interaction between aquifers, relation to stream recharge, and to near-surface and return irrigation water evaporation. Some specific features are also shown, such as zones of leakage of deeper groundwater (in this case with a GAB signature). Variations in source of recharging water at a catchment scale can be displayed. Interpolation between bores is not always possible depending on numbers and spacing, and by elongate configuration of the alluvium. In these cases, the visualisation uses discs around the screens that can be manually expanded to test extent or intersections. Separate displays are used for each of δ18O and δ2H and colour coding for isotope values.
Resumo:
The Lockyer Valley in southeast Queensland supports important and intensive irrigation which is dependant on the quality and availability of groundwater. Prolonged drought conditions from ~1997 resulted in a depletion of the alluvial aquifers, and concern for the long-term sustainability of this resource. By 2008, many areas of the valley were at < 20% of storage. Some relief occurred with rain events in early 2009, then in December 2010 - January 2011, most of southeast Queensland experienced unprecedented flooding. These storm-based events have caused a shift in research focus from investigations of drought conditions and mitigation to flood response analysis. For the alluvial aquifer system of the valley, a preliminary assessment of groundwater observation bore data, prior to and during the flood, indicates that there is a spatially variable aquifer response. While water levels in some bores screened in unconfined shallow aquifers have recovered by more than 10 m within a short period of time (months), others show only a small or moderate response. Measurements of pre- and post-flood groundwater levels and high-resolution time-series records from data loggers are considered within the framework of a 3D geological model of the Lockyer Valley using Groundwater Visualisation System(GVS). Groundwater level fluctuations covering both drought and flood periods are used to estimate groundwater recharge using the water table fluctuation method (WTF), supplemented by estimates derived using chloride mass balance. The presentation of hydraulic and recharge information in a 3D format has considerable advantages over the traditional 2D presentation of data. The 3D approach allows the distillation of multiple types of information(topography, geological, hydraulic and spatial) into one representation that provides valuable insights into the major controls of groundwater flow and recharge. The influence of aquifer lithology on the spatial variability of groundwater recharge is also demonstrated.
Resumo:
Public dialogue regarding the high concentration of drug use and crime in inner city locations is frequently legitimised through visibility of drug-using populations and a perception of high crime rates. The public space known as the Brunswick Street Mall (Valley mall), located in the inner city Brisbane suburb of Fortitude Valley, has long provided the focal point for discussions regarding the problem of illicit drug use and antisocial behaviour in Brisbane. During the late 1990s a range of stakeholders in Fortitude Valley became mobilised to tackle crime and illicit drugs. In particular they wanted to dismantle popular perceptions of the area as representing the dark and unsafe side of Brisbane. The aim of this campaign was to instil a sense of safety in the area and dislodge Fortitude Valley from its reputation as a =symbolic location of danger‘. This thesis is a case study about an urban site that became contested by the diverse aims of a range of stakeholders who were invested in an urban renewal program and community safety project. This case study makes visible a number of actors that were lured from their existing roles in an indeterminable number of heterogeneous networks in order to create a community safety network. The following analysis of the community safety network emphasises some specific actors: history, ideas, technologies, materialities and displacements. The case study relies on the work of Foucault, Latour, Callon and Law to draw out the rationalities, background contingencies and the attempts to impose order and translate a number of entities into the community safety project in Fortitude Valley. The results of this research show that the community safety project is a case of ontological politics. Specifically the data indicates that both the (reality) problem of safety and the (knowledge) solution to safety were created simultaneously. This thesis explores the idea that while violence continues to occur in the Valley, evidence that community safety got done is located through mapping its displacement and eventual disappearance. As such, this thesis argues that community safety is a =collateral reality‘.
Resumo:
Practice-led journalism research techniques were used in this study to produce a ‘first draft of history’ recording the human experience of survivors and rescuers during the January 2011 flash flood disaster in Toowoomba and the Lockyer Valley in Queensland, Australia. The study aimed to discover what can be learnt from engaging in journalistic reporting of natural disasters. This exegesis demonstrates that journalism can be both a creative practice and a research methodology. About 120 survivors, rescuers and family members of victims participated in extended interviews about what happened to them and how they survived. Their stories are the basis for two creative outputs of the study: a radio documentary and a non-fiction book, that document how and why people died, or survived, or were rescued. Listeners and readers are taken "into the flood" where they feel anxious for those in peril, relief when people are saved, and devastated when babies, children and adults are swept away to their deaths. In undertaking reporting about the human experience of the floods, several significant elements about journalistic reportage of disasters were exposed. The first related to the vital role that the online social media played during the disaster for individuals, citizen reporters, journalists and emergency services organisations. Online social media offer reporters powerful new reporting tools for both gathering and disseminating news. The second related to the performance of journalists in covering events involving traumatic experiences. Journalists are often required to cover trauma and are often amongst the first-responders to disasters. This study found that almost all of the disaster survivors who were approached were willing to talk in detail about their traumatic experiences. A finding of this project is that journalists who interview trauma survivors can develop techniques for improving their ability to interview people who have experienced traumatic events. These include being flexible with interview timing and selecting a location; empowering interviewees to understand they don’t have to answer every question they are asked; providing emotional security for interviewees; and by being committed to accuracy. Survivors may exhibit posttraumatic stress symptoms but some exhibit and report posttraumatic growth. The willingness of a high proportion of the flood survivors to participate in the flood research made it possible to document a relatively unstudied question within the literature about journalism and trauma – when and why disaster survivors will want to speak to reporters. The study sheds light on the reasons why a group of traumatised people chose to speak about their experiences. Their reasons fell into six categories: lessons need to be learned from the disaster; a desire for the public to know what had happened; a sense of duty to make sure warning systems and disaster responses to be improved in future; personal recovery; the financial disinterest of reporters in listening to survivors; and the timing of the request for an interview. Feedback to the creative-practice component of this thesis - the book and radio documentary - shows that these issues are not purely matters of ethics. By following appropriate protocols, it is possible to produce stories that engender strong audience responses such as that the program was "amazing and deeply emotional" and "community storytelling at its most important". Participants reported that the experience of the interview process was "healing" and that the creative outcome resulted in "a very precious record of an afternoon of tragedy and triumph and the bitter-sweetness of survival".
Resumo:
The implementation of the National Professional Standards for Teachers (Australian Institute for Teaching and School Leadership (AITSL), 2011) will require all teachers to undertake 30 hours per year of professional development (PD) to maintain thei registration. However, defining what constitutes effective PD s complex. This article discusses an approach used by Narangba Valley State High School (SHS) in Queensland which involves effective on-site PD, resulting in improved student outcomes. In addition to the school-administered growth and learning (GAL) plans for each teacher, the school worked collaboratively with an external person (university lecturer) and implemented an effective, sustainable, whole-school approach to PD which was ongoing, on time, on task, on the mark, and on-the-spot (Jetnikoff & Smeed, 2012). The article unpacks an interview with Ross Mackay, the Narangba Valley SHS executive-principal and one of the authors of this paper, and provides practical advice for other school leaders wishing to implement a similar approach to PD.
Resumo:
Outbreaks of an acute, severe, encephalitic illness, clinically similar to Japanese and St. Louis encephalitis, occurred in rural areas of southeastern Australia in 1917, 1918, 1922, 1925, 1951, and 1974[1,9,14-16] and in north and northwestern Australia in 1981, 1993, and 2000.[8,12,41] Approximately 420 cases were reported in these nine outbreaks.[41] They are thought to represent a single entity for which various names (Australian X disease, Murray Valley encephalitis, Australian encephalitis) have been used. Twenty-two cases were diagnosed in the 5 years between 2007 and 2011; three were fatal, and one of the fatalities occurred in a Canadian tourist on return from a holiday in northern Australia. Case-fatality rates, as high as 70 percent in the early years,[9,11] declined to 20 percent in the 1974 outbreak and have remained at about this level since then.[5,10,12] However, significant residual neurologic disability occurs in as many as 50 percent of survivors.[10,12] The presence of this disease in Papua New Guinea was confirmed in 1956.[20] The causative virus was transmitted to experimental animals as early as 1918,[6,11] although those strains could not be maintained. The definitive isolation and characterization of Murray Valley encephalitis virus in 1951[19] led to epidemiologic studies that suggested its survival in bird-mosquito cycles in northern Australia but not in the area of epidemic occurrence in southern Australia.[1] Murray Valley encephalitis is caused by Murray Valley encephalitis virus. In an effort to dissociate a disease from a specific locality, the term Australian encephalitis was proposed by residents of Murray Valley for the disease caused by Murray Valley encephalitis virus. Some researchers subsequently have attempted to expand the term Australian encephalitis to include encephalitis caused by any Australian arbovirus. Because the term Australian encephalitis has no scientific validity and is ambiguous, it should not be used.
Resumo:
The Valley Mountain 15’ quadrangle straddles the Pinto Mountain Fault, which bounds the eastern Transverse Ranges in the south against the Mojave Desert province in the north. The Pinto Mountains, part of the eastern Transverse Ranges in the south part of the quadrangle expose a series of Paleoproterozoic gneisses and granite and the Proterozoic quartzite of Pinto Mountain. Early Triassic quartz monzonite intruded the gneisses and was ductiley deformed prior to voluminous Jurassic intrusion of diorite, granodiorite, quartz monzonite, and granite plutons. The Jurassic rocks include part of the Bullion Mountains Intrusive Suite, which crops out prominently at Valley Mountain and in the Bullion Mountains, as well as in the Pinto Mountains. Jurassic plutons in the southwest part of the quadrangle are deeply denuded from midcrustal emplacement levels in contrast to supracrustal Jurassic limestone and volcanic rocks exposed in the northeast. Dikes inferred to be part of the Jurassic Independence Dike Swarm intrude the Jurassic plutons and Proterozoic rocks. Late Cretaceous intrusion of the Cadiz Valley Batholith in the northeast caused contact metamorphism of adjacent Jurassic plutonic rocks...
Resumo:
Functional MRI studies commonly refer to activation patterns as being localized in specific Brodmann areas, referring to Brodmann’s divisions of the human cortex based on cytoarchitectonic boundaries [3]. Typically, Brodmann areas that match regions in the group averaged functional maps are estimated by eye, leading to inaccurate parcellations and significant error. To avoid this limitation, we developed a method using high-dimensional nonlinear registration to project the Brodmann areas onto individual 3D co-registered structural and functional MRI datasets, using an elastic deformation vector field in the cortical parameter space. Based on a sulcal pattern matching approach [11], an N=27 scan single subject atlas (the Colin Holmes atlas [15]) with associated Brodmann areas labeled on its surface, was deformed to match 3D cortical surface models generated from individual subjects’ structural MRIs (sMRIs). The deformed Brodmann areas were used to quantify and localize functional MRI (fMRI) BOLD activation during the performance of the Tower of London task [7].
Resumo:
We developed and validated a new method to create automated 3D parametric surface models of the lateral ventricles in brain MRI scans, providing an efficient approach to monitor degenerative disease in clinical studies and drug trials. First, we used a set of parameterized surfaces to represent the ventricles in four subjects' manually labeled brain MRI scans (atlases). We fluidly registered each atlas and mesh model to MRIs from 17 Alzheimer's disease (AD) patients and 13 age- and gender-matched healthy elderly control subjects, and 18 asymptomatic ApoE4-carriers and 18 age- and gender-matched non-carriers. We examined genotyped healthy subjects with the goal of detecting subtle effects of a gene that confers heightened risk for Alzheimer's disease. We averaged the meshes extracted for each 3D MR data set, and combined the automated segmentations with a radial mapping approach to localize ventricular shape differences in patients. Validation experiments comparing automated and expert manual segmentations showed that (1) the Hausdorff labeling error rapidly decreased, and (2) the power to detect disease- and gene-related alterations improved, as the number of atlases, N, was increased from 1 to 9. In surface-based statistical maps, we detected more widespread and intense anatomical deficits as we increased the number of atlases. We formulated a statistical stopping criterion to determine the optimal number of atlases to use. Healthy ApoE4-carriers and those with AD showed local ventricular abnormalities. This high-throughput method for morphometric studies further motivates the combination of genetic and neuroimaging strategies in predicting AD progression and treatment response. © 2007 Elsevier Inc. All rights reserved.
Resumo:
The thermal decomposition of natural ammonium oxalate known as oxammite has been studied using a combination of high resolution thermogravimetry coupled to an evolved gas mass spectrometer and Raman spectroscopy coupled to a thermal stage. Three mass loss steps were found at 57, 175 and 188°C attributed to dehydration, ammonia evolution and carbon dioxide evolution respectively. Raman spectroscopy shows two bands at 3235 and 3030 cm-1 attributed to the OH stretching vibrations and three bands at 2995, 2900 and 2879 cm-1, attributed to the NH vibrational modes. The thermal degradation of oxammite may be followed by the loss of intensity of these bands. No intensity remains in the OH stretching bands at 100°C and the NH stretching bands show no intensity at 200°C. Multiple CO symmetric stretching bands are observed at 1473, 1454, 1447 and 1431cm-1, suggesting that the mineral oxammite is composed of a mixture of chemicals including ammonium oxalate dihydrate, ammonium oxalate monohydrate and anhydrous ammonium oxalate.