30 resultados para Alternative culture medium
em Queensland University of Technology - ePrints Archive
Resumo:
Aims This research sought to determine optimal corn waste stream–based fermentation medium C and N sources and incubation time to maximize pigment production by an indigenous Indonesian Penicillium spp., as well as to assess pigment pH stability. Methods and Results A Penicillium spp. was isolated from Indonesian soil, identified as Penicillium resticulosum, and used to test the effects of carbon and nitrogen type and concentrations, medium pH, incubation period and furfural on biomass and pigment yield (PY) in a waste corncob hydrolysate basal medium. Maximum red PY (497·03 ± 55·13 mg l−1) was obtained with a 21 : 1 C : N ratio, pH 5·5–6·0; yeast extract-, NH4NO3-, NaNO3-, MgSO4·7H2O-, xylose- or carboxymethylcellulose (CMC)-supplemented medium and 12 days (25°C, 60–70% relative humidity, dark) incubation. C source, C, N and furfural concentration, medium pH and incubation period all influenced biomass and PY. Pigment was pH 2–9 stable. Conclusions Penicillium resticulosum demonstrated microbial pH-stable-pigment production potential using a xylose or CMC and N source, supplemented waste stream cellulose culture medium. Significance and Impact of the Study Corn derived, waste stream cellulose can be used as a culture medium for fungal pigment production. Such application provides a process for agricultural waste stream resource reuse for production of compounds in increasing demand.
Resumo:
Commercially available generic Superglue (cyanoacrylate glue) can be used as an alternative mounting medium for stained resin-embedded semithin sections. It is colourless and contains a volatile, quick-setting solvent that produces permanent mounts of semithin sections for immediate inspection under the light microscope. Here, we compare the use of cyanoacrylate glue for mounting semithin sections with classical dibutyl phthalate xylene (DPX) in terms of practical usefulness, effectiveness and the quality of the final microscopic image.
Resumo:
Analysis of bovine interphotoreceptor matrix and conditioned medium from human Y-79 retinoblastoma cells by gelatin SDS-PAGE zymography reveals abundant activity of a 72-kDa M(r) gelatinase. The 72-kDa gelatinase from either source is inhibited by EDTA but not aprotinin or NEM, indicating that it is a metalloproteinase (MMP). The 72-kDa MMP is converted to a 62-kDa species with APMA treatment after gelatin sepharose affinity purification typical of previously described gelatinase MMP-2. The latent 72-kDa gelatinase from either bovine IPM or Y-79 media autoactivates without APMA in the presence of calcium and zinc after 72 hr at 37°C, producing a fully active mixture of proteinase species, 50 (48 in Y-79 medium), 38 and 35 kDa in size. The presence of inhibitory activity was examined in both whole bovine IPM and IPM fractions separated by SDS-PAGE. Whole IPM inhibited gelatinolytic activity of autoactivated Y-79-derived MMP in a dose-dependent manner. Inhibitory activities are observed in two protein fractions of 27-42 and 20-25 kDa. Western blots using antibodies to human tissue inhibitor of metalloproteinase 1 and 2 (TIMP-1 and -2) reveal the presence of two TIMP-1-like proteins at 21 and 29 kDa in inhibitory fractions of the bovine IPM. TIMP-2 was not detected in the inhibitory IPM fractions, consistent with the observed autoactivation of bovine IPM 72-kDa gelatinase. Potential roles for this IPM MMP-TIMP system include physiologic remodelling of the neural retina-RPE cell interface and digestion of shed rod outer segment as well as pathological processes such as retinal detachment, PE cell migration, neovascularization and tumor progression. Cultured Y-79 cells appear to be a good model for studying the production and regulation of this proteinase system.
Resumo:
The epithelium of the corneolimbus contains stem cells for regenerating the corneal epithelium. Diseases and injuries affecting the limbus can lead to a condition known as limbal stem cell deficiency (LSCD), which results in loss of the corneal epithelium, and subsequent chronic inflammation and scarring of the ocular surface. Advances in the treatment of LSCD have been achieved through use of cultured human limbal epithelial (HLE) grafts to restore epithelial stem cells of the ocular surface. These epithelial grafts are usually produced by the ex vivo expansion of HLE cells on human donor amniotic membrane (AM), but this is not without limitations. Although AM is the most widely accepted substratum for HLE transplantation, donor variation, risk of disease transfer, and rising costs have led to the search for alternative biomaterials to improve the surgical outcome of LSCD. Recent studies have demonstrated that Bombyx mori silk fibroin (hereafter referred to as fibroin) membranes support the growth of primary HLE cells, and thus this thesis aims to explore the possibility of using fibroin as a biomaterial for ocular surface reconstruction. Optimistically, the grafted sheets of cultured epithelium would provide a replenishing source of epithelial progenitor cells for maintaining the corneal epithelium, however, the HLE cells lose their progenitor cell characteristics once removed from their niche. More severe ocular surface injuries, which result in stromal scarring, damage the epithelial stem cell niche, which subsequently leads to poor corneal re-epithelialisation post-grafting. An ideal solution to repairing the corneal limbus would therefore be to grow and transplant HLE cells on a biomaterial that also provides a means for replacing underlying stromal cells required to better simulate the normal stem cell niche. The recent discovery of limbal mesenchymal stromal cells (L-MSC) provides a possibility for stromal repair and regeneration, and therefore, this thesis presents the use of fibroin as a possible biomaterial to support a three dimensional tissue engineered corneolimbus with both an HLE and underlying L-MSC layer. Investigation into optimal scaffold design is necessary, including adequate separation of epithelial and stromal layers, as well as direct cell-cell contact. Firstly, the attachment, morphology and phenotype of HLE cells grown on fibroin were directly compared to that observed on donor AM, the current clinical standard substrate for HLE transplantation. The production, transparency, and permeability of fibroin membranes were also evaluated in this part of the study. Results revealed that fibroin membranes could be routinely produced using a custom-made film casting table and were found to be transparent and permeable. Attachment of HLE cells to fibroin after 4 hours in serum-free medium was similar to that supported by tissue culture plastic but approximately 6-fold less than that observed on AM. While HLE cultured on AM displayed superior stratification, epithelia constructed from HLE on fibroin maintained evidence of corneal phenotype (cytokeratin pair 3/12 expression; CK3/12) and displayed a comparable number and distribution of ÄNp63+ progenitor cells to that seen in cultures grown on AM. These results confirm the suitability of membranes constructed from silk fibroin as a possible substrate for HLE cultivation. One of the most important aspects in corneolimbal tissue engineering is to consider the reconstruction of the limbal stem cell niche to help form the natural limbus in situ. MSC with similar properties to bone marrow derived-MSC (BM-MSC) have recently been grown from the limbus of the human cornea. This thesis evaluated methods for culturing L-MSC and limbal keratocytes using various serum-free media. The phenotype of resulting cultures was examined using photography, flow cytometry for CD34 (keratocyte marker), CD45 (bone marrow-derived cell marker), CD73, CD90, CD105 (collectively MSC markers), CD141 (epithelial/vascular endothelial marker), and CD271 (neuronal marker), immunocytochemistry (alpha-smooth muscle actin; á-sma), differentiation assays (osteogenesis, adipogenesis and chrondrogenesis), and co-culture experiments with HLE cells. While all techniques supported to varying degrees establishment of keratocyte and L-MSC cultures, sustained growth and serial propagation was only achieved in serum-supplemented medium or the MesenCult-XF„¥ culture system (Stem Cell Technologies). Cultures established in MesenCult-XF„¥ grew faster than those grown in serum-supplemented medium and retained a more optimal MSC phenotype. L-MSC cultivated in MesenCult-XFR were also positive for CD141, rarely expressed £\-sma, and displayed multi-potency. L-MSC supported growth of HLE cells, with the largest epithelial islands being observed in the presence of L-MSC established in MesenCult-XF„¥ medium. All HLE cultures supported by L-MSC widely expressed the progenitor cell marker £GNp63, along with the corneal differentiation marker CK3/12. Our findings conclude that MesenCult-XFR is a superior culture system for L-MSC, but further studies are required to explore the significance of CD141 expression in these cells. Following on from the findings of the previous two parts, silk fibroin was tested as a novel dual-layer construct containing both an epithelium and underlying stroma for corneolimbal reconstruction. In this section, the growth and phenotype of HLE cells on non-porous versus porous fibroin membranes was compared. Furthermore, the growth of L-MSC in either serum-supplemented medium or the MesenCult-XFR culture system within fibroin fibrous mats was investigated. Lastly, the co-culture of HLE and L-MSC in serum-supplemented medium on and within fibroin dual-layer constructs was also examined. HLE on porous membranes displayed a flattened and squamous monolayer; in contrast, HLE on non-porous fibroin appeared cuboidal and stratified closer in appearance to a normal corneal epithelium. Both constructs maintained CK3/12 expression and distribution of £GNp63+ progenitor cells. Dual-layer fibroin scaffolds consisting of HLE cells and L-MSC maintained a similar phenotype as on the single layers alone. Overall, the present study proposed to create a three dimensional limbal tissue substitute of HLE cells and L-MSC together, ultimately for safe and beneficial transplantation back into the human eye. The results show that HLE and L-MSC can be cultivated separately and together whilst maintaining a clinically feasible phenotype containing a majority of progenitor cells. In addition, L-MSC were able to be cultivated routinely in the MesenCult-XF® culture system while maintaining a high purity for the MSC characteristic phenotype. However, as a serum-free culture medium was not found to sustain growth of both HLE and L-MSC, the combination scaffold was created in serum-supplemented medium, indicating that further refinement of this cultured limbal scaffold is required. This thesis has also demonstrated a potential novel marker for L-MSC, and has generated knowledge which may impact on the understanding of stromal-epithelial interactions. These results support the feasibility of a dual-layer tissue engineered corneolimbus constructed from silk fibroin, and warrant further studies into the potential benefits it offers to corneolimbal tissue regeneration. Further refinement of this technology should explore the potential benefits of using epithelial-stromal co-cultures with MesenCult-XF® derived L-MSC. Subsequent investigations into the effects of long-term culture on the phenotype and behaviour of the cells in the dual-layer scaffolds are also required. While this project demonstrated the feasibility in vitro for the production of a dual-layer tissue engineered corneolimbus, further studies are required to test the efficacy of the limbal scaffold in vivo. Future in vivo studies are essential to fully understand the integration and degradation of silk fibroin biomaterials in the cornea over time. Subsequent experiments should also investigate the use of both AM and silk fibroin with epithelial and stromal cell co-cultures in an animal model of LSCD. The outcomes of this project have provided a foundation for research into corneolimbal reconstruction using biomaterials and offer a stepping stone for future studies into corneolimbal tissue engineering.
Resumo:
Purpose To develop a novel 3-D cell culture model with the view to studying the pathomechanisms underlying the development of age-related macular degeneration (AMD). Our central hypothesis is that the silk structural protein fibroin used in conjunction with cultured human cells can be used to mimic the structural relationships between the RPE and choriocapillaris in health and disease. Methods Co-cultures of human RPE cells (ARPE-19 cells grown in Miller’s medium) and microvascular endothelial cells (HMEC-1 cells grown in endothelial culture medium) were established on opposing sides of a synthetic Bruch’s membrane (3 microns thick) constructed from B mori silk fibroin. Cell attachment was facilitated by pre-coating the fibroin membrane with vitronectin (for ARPE-19 cells) and gelatin (for HMEC-1 cells) respectively. The effects of tropoelastin on attachment of ARPE-19 cells was also examined. Barrier function was examined by measurement of trans-epithelial resistance (TER) using a voltohmmeter (EVOM-2). The phagocytic activity of the synthetic RPE was tested using vitronectin-coated microspheres (2 micron diameter FluoSpheres). In some cultures, membrane defects were created by puncturing within a 24 G needle. The architecture of the synthetic tissue before and after wounding was examined by confocal microscopy after staining for ZO-1 and F-actin. Results The RPE layer of the 3D model developed a cobblestoned morphology (validated by staining for ZO-1 and F-actin), displayed barrier function (validated by measurement of TER) and demonstrated cytoplasmic uptake of vitronectin-coated microspheres. Attachment of ARPE-19 cells to fibroin was unaffected by tropoelastin. Microvascular endothelial cells attached well to the gelatin-coated surface of the fibroin membrane and remained physically separated from the overlaying RPE layer. The fibroin membranes were amenable to puncturing without collapse thus providing the opportunity to study transmembrane migration of the endothelial cells. Conclusions Synthetic Bruch’s membranes constructed from silk fibroin, vitronectin and gelatin, support the co-cultivation of RPE cells and microvascular endothelial cells. The resulting RPE layer displays functions similar to that of native RPE and the entire tri-layered structure displays potential to be used as an in vitro model of choroidal neovascularization.
Resumo:
One of the problems to be solved in attaining the full potentials of hematopoietic stem cell (HSC) applications is the limited availability of the cells. Growing HSCs in a bioreactor offers an alternative solution to this problem. Besides, it also offers the advantages of eliminating labour intensive process as well as the possible contamination involved in the periodic nutrient replenishments in the traditional T-flask stem cell cultivation. In spite of this, the optimization of HSC cultivation in a bioreactor has been barely explored. This manuscript discusses the development of a mathematical model to describe the dynamics in nutrient distribution and cell concentration of an ex vivo HSC cultivation in a microchannel perfusion bioreactor. The model was further used to optimize the cultivation by proposing three alternative feeding strategies in order to prevent the occurrence of nutrient limitation in the bioreactor. The evaluation of these strategies, the periodic step change increase in the inlet oxygen concentration, the periodic step change increase in the media inflow, and the feedback control of media inflow, shows that these strategies can successfully improve the cell yield of the bioreactor. In general, the developed model is useful for the design and optimization of bioreactor operation.
Resumo:
Current developments in gene medicine and vaccination studies are utilizing plasmid DNA (pDNA) as the vector. For this reason, there has been an increasing trend towards larger and larger doses of pDNA utilized in human trials: from 100-1000 μg in 2002 to 500-5000 μg in 2005. The increasing demand of pDNA has created the need to revolutionalize current production levels under optimum economy. In this work, different standard media (LB, TB and SOC) for culturing recombinant Escherichia coli DH5α harbouring pUC19 were compared to a medium optimised for pDNA production. Lab scale fermentations using the standard media showed that the highest pDNA volumetric and specific yields were for TB (11.4 μg/ml and 6.3 μg/mg dry cell mass respectively) and the lowest was for LB (2.8 μg/ml and 3.3 μg/mg dry cell mass respectively). A fourth medium, PDMR, designed by modifying a stoichiometrically-formulated medium with an optimised carbon source concentration and carbon to nitrogen ratio displayed pDNA volumetric and specific yields of 23.8 μg/ml and 11.2 μg/mg dry cell mass respectively. However, it is the economic advantages of the optimised medium that makes it so attractive. Keeping all variables constant except medium and using LB as a base scenario (100 medium cost [MC] units/mg pDNA), the optimised PDMR medium yielded pDNA at a cost of only 27 MC units/mg pDNA. These results show that greater amounts of pDNA can be obtained more economically with minimal extra effort simply by using a medium optimised for pDNA production.
Resumo:
The behaviour of cells cultured within three-dimensional (3D) structures rather than onto two-dimensional (2D) culture plastic more closely reflects their in vivo responses. Consequently, 3D culture systems are becoming crucial scientific tools in cancer cell research. We used a novel 3D culture concept to assess cell-matrix interactions implicated in carcinogenesis: a synthetic hydrogel matrix equipped with key biomimetic features, namely incorporated cell integrin-binding motifs (e.g. RGD peptides) and the ability of being degraded by cell-secreted proteases (e.g. matrix metalloproteases). As a cell model, we chose epithelial ovarian cancer, an aggressive disease typically diagnosed at an advanced stage when chemoresistance occurs. Both cell lines used (OV-MZ-6, SKOV-3) proliferated similarly in 2D, but not in 3D. Spheroid formation was observed exclusively in 3D when cells were embedded within hydrogels. By exploiting the design flexibility of the hydrogel characteristics, we showed that proliferation in 3D was dependent on cell-integrin engagement and the ability of cells to proteolytically remodel their extracellular microenvironment. Higher survival rates after exposure to the anti-cancer drug paclitaxel were observed in cell spheroids grown in hydrogels (40-60%) compared to cell monolayers in 2D (20%). Thus, 2D evaluation of chemosensitivity may not reflect pathophysiological events seen in patients. Because of the design flexibility of their characteristics and their stability in long-term cultures (28 days), these biomimetic hydrogels represent alternative culture systems for the increasing demand in cancer research for more versatile, physiologically relevant and reproducible 3D matrices.
Resumo:
The aim of this project was to investigate the in vitro osteogenic potential of human mesenchymal progenitor cells in novel matrix architectures built by means of a three-dimensional bioresorbable synthetic framework in combination with a hydrogel. Human mesenchymal progenitor cells (hMPCs) were isolated from a human bone marrow aspirate by gradient centrifugation. Before in vitro engineering of scaffold-hMPC constructs, the adipogenic and osteogenic differentiation potential was demonstrated by staining of neutral lipids and induction of bone-specific proteins, respectively. After expansion in monolayer cultures, the cells were enzymatically detached and then seeded in combination with a hydrogel into polycaprolactone (PCL) and polycaprolactone-hydroxyapatite (PCL-HA) frameworks. This scaffold design concept is characterized by novel matrix architecture, good mechanical properties, and slow degradation kinetics of the framework and a biomimetic milieu for cell delivery and proliferation. To induce osteogenic differentiation, the specimens were cultured in an osteogenic cell culture medium and were maintained in vitro for 6 weeks. Cellular distribution and viability within three-dimensional hMPC bone grafts were documented by scanning electron microscopy, cell metabolism assays, and confocal laser microscopy. Secretion of the osteogenic marker molecules type I procollagen and osteocalcin was analyzed by semiquantitative immunocytochemistry assays. Alkaline phosphatase activity was visualized by p-nitrophenyl phosphate substrate reaction. During osteogenic stimulation, hMPCs proliferated toward and onto the PCL and PCL-HA scaffold surfaces and metabolic activity increased, reaching a plateau by day 15. The temporal pattern of bone-related marker molecules produced by in vitro tissue-engineered scaffold-cell constructs revealed that hMPCs differentiated better within the biomimetic matrix architecture along the osteogenic lineage.
The ratio of VEGF/PEDF expression in bone marrow mesenchymal stem cells regulates neovascularization
Resumo:
Angiogenesis, or neovascularization, is a finely balanced process controlled by pro- and anti-angiogenic factors. Vascular endothelial growth factor (VEGF) is a major pro-angiogenic factor, whereas pigment epithelial-derived factor (PEDF) is the most potent natural angiogenesis inhibitor. In this study, the regulatory role of bone marrow stromal cells (BMSCs) during angiogenesis was assessed by the endothelial differentiation potential, VEGF/PEDF production and responses to pro-angiogenic and hypoxic conditions. The in vivo regulation of blood vessel formation by BMSCs was also explored in a SCID mouse model. Results showed that PEDF was expressed more prominently in BMSCs compared to VEGF. This contrasted with human umbilical vein endothelial cells (HUVECs) where the expression of VEGF was higher than that of PEDF. The ratio of VEGF/PEDF gene expression in BMSCs increased when VEGF concentration reached 40 ng/ml in the culture medium, but decreased at 80 ng/ml. Under CoCl2- induced hypoxic conditions, the VEGF/PEDF ratio of BMSCs increased significantly in both normal and angiogenic culture media. There was no expression of endothelial cell markers in BMSCs cultured in either pro-angiogenic or hypoxia culture conditions when compared with HUVECs. The in vivo study showed that VEGF/PEDF expression closely correlated with the degree of neovascularization, and that hypoxia significantly induced pro-angiogenic activity in BMSCs. These results indicate that, rather than being progenitors of endothelial cells, BMSCs play an important role in regulating the neovascularization process, and that the ratio of VEGF and PEDF may, in effect, be an indicator of the pro- or antiangiogenic activities of BMSCs.
Resumo:
Objective: To quantify the levels of proteoglycan 4 (PRG4) expression by subpopulations of chondrocytes from superficial, middle, and deep layers of normal bovine calf cartilage in various culture systems. Methods: Bovine calf articular cartilage discs or isolated cells were used in I of 3 systems of chondrocyte culture: explant, monolayer, or transplant, for 1-9 days. PRG4 expression was quantified by enzyme-linked immunosorbent assay of spent medium and localized by immunohistochemistry at the articular surface and within chondrocytes in explants and cultured cells. Results: Superficial chondrocytes secreted much more PRG4 than did middle and deep chondrocytes in all cultures. The pattern of PRG4 secretion into superficial culture medium varied with the duration of culture, decreasing with time in explant culture (from similar to25 mug/cm(2)/day on days 0-1 to similar to3 mug/cm(2)/day on days 5-9), while increasing in monolayer culture (from similar to1 pg/cell/day on days 0-1 to similar to7 pg/cell/day on days 7-9) and tending to increase in transplant culture (reaching similar to2 mug/cm(2)/day by days 7-9). In all of the culture systems, inclusion of ascorbic acid stimulated PRG4 secretion, and the source of PRG4 was immunolocalized to superficial cells. Conclusion: The results described here indicate that the phenotype of PRG4 secretion by chondrocytes in culture is generally maintained, in that PRG4 is expressed to a much greater degree by chondrocytes from the superficial zone than by those from the middle and deep zones. The marked up-regulation of PRG4 synthesis by ascorbic acid may have implications for cartilage homeostasis and prevention of osteoarthritic disease. Transplanting specialized cells that secrete PRG4 to a surface may impart functional lubrication and be generally applicable to many tissues in the body.
Resumo:
Calcium (Ca) is the main element of most pulp capping materials and plays an essential role in mineralization. Different pulp capping materials can release various concentrations of Ca ions leading to different clinical outcomes. The purpose of this study was to investigate the effects of various concentrations of Ca ions on the growth and osteogenic differentiation of human dental pulp cells (hDPCs). Different concentrations of Ca ions were added to growth culture medium and osteogenic inductive culture medium. A Cell Counting Kit-8 (CCK-8) was used to determine the proliferation of hDPCs in growth culture medium. Osteogenic differentiation and mineralization were measured by alkaline phosphatase (ALP) assay, Alizarin red S/von kossa staining, calcium content quantitative assay. The selected osteogenic differentiation markers were investigated by quantitative real-time polymerase chain reaction (qRT-PCR). Within the range of 1.8–16.2 mM, increased concentrations of Ca ions had no effect on cell proliferation, but led to changes in osteogenic differentiation. It was noted that enhanced mineralized matrix nodule formation was found in higher Ca ions concentrations; however, ALP activity and gene expression were reduced. qRT-PCR results showed a trend towards down-regulated mRNA expression of type I collagen (COL1A2) and Runx2 at elevated concentrations of Ca ions, whereas osteopontin (OPN) and osteocalcin (OCN) mRNA expression was significantly up-regulated. Ca ions content in the culture media can significantly influence the osteogenic properties of hDPCs, indicating the importance of optimizing Ca ions release from dental pulp capping materials in order to achieve desirable clinical outcomes.
Resumo:
This study, investigating 263 women undergoing trans-vaginal oocyte retrieval for in vitro fertilisation (IVF) found that microorganisms colonising follicular fluid contributed to adverse IVF (pre-implantation) and pregnancy (post-implantation) outcomes including poor quality embryos, failed pregnancy and early pregnancy loss (< 37 weeks gestation). Some microorganisms also showed in vitro growth patterns in liquid media that appeared to be enhanced by the hormonal stimulation protocol used for oocyte retrieval. Elaborated cytokines within follicular fluid were also associated with adverse IVF outcomes. This study is imperative because infertility affects 16% of the human population and the numbers of couples needing assistance continues to increase. Despite significant improvements in the technical aspects of assisted reproductive technologies (ART), the live birth rate has not increased proportionally. Overt genital tract infection has been associated with both infertility and adverse pregnancy outcomes (including miscarriage and preterm birth) as a direct result of the infection or the host response to it. Importantly, once inflammation had become established, medical treatment often failed to prevent these significant adverse outcomes. Current evaluations of fertility focus on the ovary as a site of steroid hormone production and ovulation. However, infertility as a result of subclinical colonisation of the ovary has not been reported. Furthermore, identification of the microorganisms present in follicular fluid and the local cytokine profile may provide clinicians with an early indication of the prognosis for IVF treatment in infertile couples, thus allowing antimicrobial treatment and/or counselling about possible IVF failure. During an IVF cycle, multiple oocytes undergo maturation in vivo in response to hormonal hyperstimulation. Oocytes for in vitro insemination are collected trans-vaginally. The follicular fluid that bathes the maturing oocyte in vivo, usually is discarded as part of the IVF procedure, but provides a unique opportunity to investigate microbial causes of adverse IVF outcomes. Some previous studies have identified follicular fluid markers that predict IVF pregnancy outcomes. However, there have not been any detailed microbiological studies of follicular fluid. For this current study, paired follicular fluid and vaginal secretion samples were collected from women undergoing IVF cycles to determine whether microorganisms in follicular fluid were associated with adverse IVF outcomes. Microorganisms in follicular fluid were regarded as either "colonisers" or "contaminants"; colonisers, if they were unique to the follicular fluid sample, and contaminants if the same microorganisms were detected in the vaginal and follicular fluid samples indicating that the follicular fluid was merely contaminated during the oocyte retrieval process. Quite unexpectedly, by these criteria, we found that follicular fluid from approximately 30% of all subjects was colonised with bacteria. Fertile and infertile women with colonised follicular fluid had decreased embryo transfer rates and decreased pregnancy rates compared to women with contaminated follicular fluids. The observation that follicular fluid was not always sterile, but contained a diverse range of microorganisms, is novel. Many of the microorganisms we detected in follicular fluid are known opportunistic pathogens that have been detected in upper genital tract infections and are associated with adverse pregnancy outcomes. Bacteria were able to survive for at least 28 weeks in vitro, in cultures of follicular fluid. Within 10 days of establishing these in vitro cultures, several species (Lactobacillus spp., Bifidobacterium spp., Propionibacterium spp., Streptococcus spp. and Salmonella entericus) had formed biofilms. Biofilms play a major role in microbial pathogenicity and persistence. The propensity of microbial species to form biofilms in follicular fluid suggests that successful treatment of these infections with antimicrobials may be difficult. Bifidobacterium spp. grew, in liquid media, only if concentrations of oestradiol and progesterone were similar to those achieved in vivo during an IVF cycle. In contrast, the growth of Streptococcus agalactiae and Escherichia coli was inhibited or abolished by the addition of these hormones to culture medium. These data suggest that the likelihood of microorganisms colonising follicular fluid and the species of bacteria involved is influenced by the stage of the menstrual cycle and, in the case of IVF, the nature and dose of steroid hormones administered for the maturation of multiple oocytes in vivo. Our findings indicate that the elevated levels of steroid hormones during an IVF cycle may influence the microbial growth within follicular fluid, suggesting that the treatment itself will impact on the microflora present in the female upper genital tract during pre-conception and early post-conception phases of the cycle. The effect of the host immune response on colonising bacteria and on the outcomes of IVF also was investigated. White blood cells reportedly compose between 5% and 15% of the cell population in follicular fluid. The follicular membrane is semi-permeable and cells are actively recruited as part of the normal menstrual cycle and in response to microorganisms. A previous study investigated follicular fluid cytokines from infertile women and fertile oocyte donors undergoing IVF, and concluded that there were no significant differences in the cytokine concentrations between the two groups. However, other studies have reported differences in the follicular fluid cytokine levels associated with infertile women with endometriosis or polycystic ovary syndrome. In this study, elevated levels of interleukin (IL)-1 á, IL-1 â and vascular endothelial growth factor (VEGF) in vaginal fluid were associated with successful fertilisation, which may be useful marker for successful fertilisation outcomes for women trying to conceive naturally or prior to oocyte retrieval for IVF. Elevated levels of IL-6, IL-12p40, granulocyte colony stimulating factor (GCSF) and interferon-gamma (IFN ã) in follicular fluid were associated with successful embryo transfer. Elevated levels of pro-inflammatory IL-18 and decreased levels of anti-inflammatory IL-10 were identified in follicular fluid from women with idiopathic infertility. Successful fertilisation and implantation is dependent on a controlled pro-inflammatory environment, involving active recruitment of pro-inflammatory mediators to the genital tract as part of the menstrual cycle and early pregnancy. However, ongoing pregnancy requires an enhanced anti-inflammatory environment to ensure that the maternal immune system does not reject the semi-allergenic foetus. The pro-inflammatory skew in the follicular fluid of women with idiopathic infertility, correlates with normal rates of fertilisation, embryo discard and embryo transfer, observed for this cohort, which were similar to the outcomes observed for fertile women. However, their pregnancy rate was reduced compared to fertile women. An altered local immune response in follicular fluid may provide a means of explaining infertility in this cohort, previously defined as 'idiopathic'. This study has found that microorganisms colonising follicular fluid may have contributed to adverse IVF and pregnancy outcomes. Follicular fluid bathes the cumulus oocyte complex during the in vivo maturation process, and microorganisms in the fluid, their metabolic products or the local immune response to these microorganisms may result in damage to the oocytes, degradation of the cumulus or contamination of the IVF culture system. Previous studies that have discounted bacterial contamination of follicular fluid as a cause of adverse IVF outcomes failed to distinguish between bacteria that were introduced into the follicular fluid at the time of trans-vaginal oocyte retrieval and those that colonised the follicular fluid. Those bacteria that had colonised the fluid may have had time to form biofilms and to elicit a local immune response. Failure to draw this distinction has previously prevented consideration of bacterial colonisation of follicular fluid as a cause of adverse IVF outcomes. Several observations arising from this study are of significance to IVF programs. Follicular fluid is not always sterile and colonisation of follicular fluid is a cause of adverse IVF and pregnancy outcomes. Hormonal stimulation associated with IVF may influence whether follicular fluid is colonised and enhance the growth of specific species of bacteria within follicular fluid. Bacteria in follicular fluid may form biofilms and literature has reported that this may influence their susceptibility to antibiotics. Monitoring the levels of selected cytokines within vaginal secretions may inform fertilisation outcomes. This study has identified novel factors contributing to adverse IVF outcomes and that are most likely to affect also natural conception outcomes. Early intervention, possibly using antimicrobial or immunological therapies may reduce the need for ART and improve reproductive health outcomes for all women.
Resumo:
The ultimate goal of periodontal tissue engineering is to produce predictable regeneration of alveolar bone, root cementum, and periodontal ligament, which are lost as a result of periodontal diseases. To achieve this goal, it is of great importance to develop novel bioactive materials which could stimulate the proliferation, differentiation and osteogenic/cementogenic gene expression of periodontal ligament cells (PDLCs) for periodontal regeneration. In this study, we synthesized novel Ca7Si2P2O16 ceramic powders for the first time by the sol–gel method and investigated the biological performance of PDLCs after exposure to different concentrations of Ca7Si2P2O16 extracts. The original extracts were prepared at 200 mg ml-1 and further diluted with serum-free cell culture medium to obtain a series of diluted extracts (100, 50, 25, 12.5 and 6.25 mg ml–1). Proliferation, alkaline phosphatase(ALP) activity, Ca deposition, and osteogenesis/cementogenesis-related gene expression (ALP, Col I, Runx2 and CEMP1) were assayed for PDLCs on days 7 and 14. The results showed that the ionic products from Ca7Si2P2O16 powders significantly stimulated the proliferation, ALP activity, Ca deposition and osteogenesis/cementogenesisrelated gene expression of PDLCs. In addition, it was found that Ca7Si2P2O16 powders had excellent apatite-mineralization ability in simulated body fluids. This study demonstrated that Ca7Si2P2O16 powders with such a specific composition possess the ability to stimulate the PDLC proliferation and osteoblast/cemenoblast-like cell differentiation, indicating that they are a promising bioactive material for periodontal tissue regeneration application.