188 resultados para Airport buildings

em Queensland University of Technology - ePrints Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differential axial shortening, distortion and deformation in high rise buildings is a serious concern. They are caused by three time dependent modes of volume change; “shrinkage”, “creep” and “elastic shortening” that takes place in every concrete element during and after construction. Vertical concrete components in a high rise building are sized and designed based on their strength demand to carry gravity and lateral loads. Therefore, columns and walls are sized, shaped and reinforced differently with varying concrete grades and volume to surface area ratios. These structural components may be subjected to the detrimental effects of differential axial shortening that escalates with increasing the height of buildings. This can have an adverse impact on other structural and non-structural elements. Limited procedures are available to quantify axial shortening, and the results obtained from them differ because each procedure is based on various assumptions and limited to few parameters. All these prompt to a need to develop an accurate numerical procedure to quantify the axial shortening of concrete buildings taking into account the important time varying functions of (i) construction sequence (ii) Young’s Modulus and (iii) creep and shrinkage models associated with reinforced concrete. General assumptions are refined to minimize variability of creep and shrinkage parameters to improve accuracy of the results. Finite element techniques are used in the procedure that employs time history analysis along with compression only elements to simulate staged construction behaviour. This paper presents such a procedure and illustrates it through an example. Keywords: Differential Axial Shortening, Concrete Buildings, Creep and Shrinkage, Construction Sequence, Finite Element Method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flexibility is a key driver of any successful design, specifically in highly unpredictable environment such as airport terminal. Ever growing aviation industry requires airport terminals to be planned and constructed in such a way that will allow flexibility for future design, alteration and redevelopment. The concept of flexibility in terminal design is a relatively new initiative, where existing rules or guidelines are not adequate to assist designers. A shift towards flexible design concept would allow terminal buildings to be designed to accommodate future changes and to make passengers’ journey as simple, timely and hassle free as possible. Currently available research indicates that a theoretical framework on flexible design approach for airport terminals would facilitate the future design process. The generic principles of flexibility are investigated in the current research to incorporate flexible design approaches within the process of an airport terminal design. A conceptual framework is proposed herein, which is expected to ascertain flexibility to current passenger terminal facilities within their corresponding locations as well as in future design and expansion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[Book] The potential of electric light as a new building “material” was recognized in the 1920s and became a useful design tool by the mid-century. Skillful lighting allowed for theatricality, narrative, and a new emphasis on structure and space. The Structure of Light tells the story of the career of Richard Kelly, the field’s most influential figure. Six historians, architects, and practitioners explore Kelly’s unparalleled influence on modern architecture and his lighting designs for some of the 20th century’s most iconic buildings: Philip Johnson’s Glass House; Louis Kahn’s Kimbell Art Museum; Eero Saarinen’s GM Technical Center; and Mies van der Rohe’s Seagram Building, among many others. This beautifully illustrated history demonstrates the range of applications, building types, and artistic solutions he employed to achieve a “nocturnal modernity” that would render buildings evocatively different at night. The survival of Kelly’s rich correspondence and extensive diaries allows an in-depth look at the triumphs and uncertainties of a young profession in the making. The first book to focus on the contributions of a master in the field of architectural lighting, this fascinating volume celebrates the practice’s significance in modern design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the accelerated trend of global warming, the thermal behavior of existing buildings, which were typically designed based on current weather data, may not be able to cope with the future climate. This paper quantifies, through computer simulations, the increased cooling loads imposed by potential global warming and probable indoor temperature increases due to possible undersized air-conditioning system. It is found from the sample office building examined that the existing buildings would generally be able to adapt to the increasing warmth of 2030 year Low and High scenarios projections and 2070 year Low scenario projection. However, for the 2070 year High scenario, the study indicates that the existing office buildings, in all capital cities except for Hobart, will suffer from overheating problems. When the annual average temperature increase exceeds 2°C, the risk of current office buildings subjected to overheating will be significantly increased. For existing buildings which are designed with current climate condition, it is shown that there is a nearly linear correlation between the increase of average external air temperature and the increase of building cooling load. For the new buildings, in which the possible global warming has been taken into account in the design, a 28-59% increase of cooling capacity under 2070 High scenario would be required to improve the building thermal comfort level to an acceptable standard.