756 resultados para Agricultural knowledge
em Queensland University of Technology - ePrints Archive
Resumo:
Nitrous oxide (N2O) is primarily produced by the microbially-mediated nitrification and denitrification processes in soils. It is influenced by a suite of climate (i.e. temperature and rainfall) and soil (physical and chemical) variables, interacting soil and plant nitrogen (N) transformations (either competing or supplying substrates) as well as land management practices. It is not surprising that N2O emissions are highly variable both spatially and temporally. Computer simulation models, which can integrate all of these variables, are required for the complex task of providing quantitative determinations of N2O emissions. Numerous simulation models have been developed to predict N2O production. Each model has its own philosophy in constructing simulation components as well as performance strengths. The models range from those that attempt to comprehensively simulate all soil processes to more empirical approaches requiring minimal input data. These N2O simulation models can be classified into three categories: laboratory, field and regional/global levels. Process-based field-scale N2O simulation models, which simulate whole agroecosystems and can be used to develop N2O mitigation measures, are the most widely used. The current challenge is how to scale up the relatively more robust field-scale model to catchment, regional and national scales. This paper reviews the development history, main construction components, strengths, limitations and applications of N2O emissions models, which have been published in the literature. The three scale levels are considered and the current knowledge gaps and challenges in modelling N2O emissions from soils are discussed.
Resumo:
Mainstream discourse on the revolving around food security is often portrayed by macro level indicators on nutrition, consumption and food production. While these indicators may prove significant in addressing food security in the national and regional levels, it falls short in addressing it among the indigenous peoples’ (IP) communities in the Philippines. Reflecting through the experiences in agricultural production, indigenous knowledge and socio-political institutions are relevant factors that must be seriously considered when food security among IPs are concerned. It is argued that disregarding micro level interactions over macro development policies will not address the issue of food security among marginalized sectors. The paper presents policy recommendations in taking cultural systems seriously in addressing food security among indigenous peoples.
Resumo:
Cooperation between multiple environmental decision-makers and activities is necessary to address the impacts of diffuse sources of agricultural pollution on the water quality entering Australia’s Great Barrier Reef (GBR). Water planning efforts requires available knowledge to inform this co-operative water program implementation and reform. This paper uses knowledge sharing, translation and feedback features of collaboration as a way to assess knowledge work practices during key phases of the water planning process. This enabled a systematic review of knowledge work practices in partnership with collaborative water planning groups established to inform water quality program investment decisions in the GBR’s Wet Tropics region. This research builds on the growing academic and policy interest in the conditions required to enable different types of knowledge to be successfully used for policy-making by focusing on when, how and why knowledge work to meet these conditions is required.
Resumo:
The research reported in this paper explores autonomous technologies for agricultural farming application and is focused on the development of multiple-cooperative agricultural robots (AgBots). These are highly autonomous, small, lightweight, and unmanned machines that operate cooperatively (as opposed to a traditional single heavy machine) and are suited to work on broadacre land (large-scale crop operations on land parcels greater than 4,000m2). Since this is a new, and potentially disruptive technology, little is yet known about farmer attitudes towards robots, how robots might be incorporated into current farming practice, and how best to marry the capability of the robot with the work of the farmer. This paper reports preliminary insights (with a focus on farmer-robot control) gathered from field visits and contextual interviews with farmers, and contributes knowledge that will enable further work toward the design and application of agricultural robotics.