245 resultados para Adenosine A(2a) receptor

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In our laboratory we have developed a quantitative-polymerase chain reaction (Q-PCR) strategy to examine the differential expression of adenosine receptor (ADOR), A(1), A(2A), A(2B) and A(3), and estrogen receptors (ER) alpha and beta. Brain and uterine mRNA were first used to optimise specific amplification conditions prior to SYBR Green I real time analysis of receptor subtype expression. SYBR Green I provided a convenient and sensitive means of examining specific PCR amplification product in real time, and allowed the generation of standard curves from which relative receptor abundance could be determined. Real time Q-PCR analysis was then performed, to examine changes in receptor expression levels in brains of adult female Wistar rats 3-month post ovariectomy. Comparison with sham-operated age-matched control rats demonstrated both comparative and absolute-copy number changes in receptor levels. Evaluation of both analytical methods investigated 18S rRNA as an internal reference for comparative gene expression analysis in the brain. The results of this study revealed preferential repression of ADORA(2A) (>4-fold down) and consistent (>2-fold) down-regulation of ADORA(1), ADORA(3), and ER-beta, following ovariectomy. No change was found in ADORA(2B) or ER-alpha. Analysis of absolute copy number in this study revealed a correlation between receptor expression in response to ovariectomy, and relative receptor subtype abundance in the brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purine compounds, such as caffeine, have many health-promoting properties and have proven to be beneficial in treating a number of different conditions. Theacrine, a purine alkaloid structurally similar to caffeine and abundantly present in Camellia kucha, has recently become of interest as a potential therapeutic compound. In the present study, theacrine was tested using a rodent behavioral model to investigate the effects of the drug on locomotor activity. Long Evans rats were injected with theacrine (24 or 48 mg/kg, i.p.) and activity levels were measured. Results showed that the highest dose of theacrine (48 mg/kg, i.p.) significantly increased locomotor activity compared to control animals and activity remained elevated throughout the duration of the session. To test for the involvement of adenosine receptors underlying theacrine's motor-activating properties, rats were administered a cocktail of the adenosine A₁ agonist, N⁶-cyclopentyladenosine (CPA; 0.1 mg/kg, i.p.) and A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680; 0.2 mg/kg, i.p.). Pre-treatment with theacrine significantly attenuated the motor depression induced by the adenosine receptor agonists, indicating that theacrine is likely acting as an adenosine receptor antagonist. Next, we examined the role of DA D₁ and D₂ receptor antagonism on theacrine-induced hyperlocomotion. Both antagonists, D₁R SCH23390 (0.1 or 0.05 mg/kg, i.p.) and D₂R eticlopride (0.1 mg/kg, i.p.), significantly reduced theacrine-stimulated activity indicating that this behavioral response, at least in part, is mediated by DA receptors. In order to investigate the brain region where theacrine may be acting, the drug (10 or 20 μg) was infused bilaterally into nucleus accumbens (NAc). Theacrine enhanced activity levels in a dose-dependent manner, implicating a role of the NAc in modulating theacrine's effects on locomotion. In addition, theacrine did not induce locomotor sensitization or tolerance after chronic exposure. Taken together, these findings demonstrate that theacrine significantly enhances activity; an effect which is mediated by both the adenosinergic and dopaminergic systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The C allele of a common polymorphism of the serotonin 2A receptor (HTR2A) gene, T102C, results in reduced synthesis of 5-HT2A receptors and has been associated with current smoking status in adults. The -1438A/G polymorphism, located in the regulatory region of this gene, is in linkage disequilibrium with T102C, and the A allele is associated with increased promoter activity and with smoking in adult males. We investigated the contributions of the HTR2A gene, chronic psychological stress, and impulsivity to the prediction of cigarette smoking status and dependence in young adults. Methods: T102C and -1438A/G genotyping was conducted on 132 healthy Caucasian young adults (47 smokers) who completed self-report measures of chronic stress, depressive symptoms, impulsive personality and cigarette use. Results: A logistic regression analysis of current cigarette smoker user status, after adjusting for gender, depressive symptom severity and chronic stress, indicated that the T102C TT genotype relative to the CC genotype (OR = 7.53), and lower punishment sensitivity (OR = 0.91) were each significant predictive risk factors. However, for number of cigarettes smoked, only lower punishment sensitivity was a significant predictor (OR = 0.81). Conclusions: These data indicate the importance of the T102C polymorphism to tobacco use but not number of cigarettes smoked for Caucasian young adults. Future studies should examine whether this is explained by effects of nicotine on the serotonin system. Lower punishment sensitivity increased risk of both smoking and of greater consumption, perhaps via a reduced sensitivity to cigarette health warnings and negative physiological effects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Adenosine is an important cardioprotective agent that works via several adenosine receptor (ADOR) subtypes to regulate cardiovascular activity. It is well established that functional responses to adenosine decline with age. What is unclear, though, is whether these changes occur at the receptor, second messenger or translational level. In this study we determined the effect of age on cardiac adenosine receptor expression using the housekeeping gene 18S rRNA versus the adenosine A2B receptor gene as internal controls. Absolute quantification showed that no age-related changes occurred in the expression of 18S rRNA or adenosine A2B receptor internal control genes. Subsequently, relative analysis of the adenosine receptor subtypes using 18S rRNA found a significant age-related reduction in the expression of the adenosine A1 receptor (5.5-fold), with no changes in the expression of the adenosine A2A, A2B and A3 receptors. When using the expression of the adenosine A2B receptor as the internal control gene, a significant down regulation of both the adenosine A1 (5.4-fold) and A2A (2.2-fold) receptors with no change in the expression of adenosine A3 receptor was found. Therefore, the high level of expression of the 18S rRNA housekeeping gene was found to mask a significant change in expression of the adenosine A2A receptor with age. Ultimately, these findings show an age-related reduction in adenosine A1 and A2A receptor expression in rat heart.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The novel pyrazolo[3,4-d]pyrimidine compound GU285 (4-amino-6-alpha-carbamoylethylthio-1- phenylpyrazolo[3,4-d]pyrimidine, CAS 134896-40-5) was examined for its ability (1) to inhibit binding of adenosine (ADO) receptor ligands in rat brain membranes, (2) to antagonise functional responses to ADO agonists in rat right and left atria and coronary resistance vessels, and (3) to reduce the fall in heart rate and arterial blood pressure produced by the ADO A1 agonist N6-cyclopentyladenosine (CPA) in the intact, anaesthetized rat. GU285 competitively inhibited binding of the ADO A1 agonist [3H]-R-N6-phenylisopropyladenosine (R-PIA) yielding a Ki value of 11 (7-18) nmol.l-1 (geometric mean +/- 95% Cl). When assayed against the ADO A2A selective agonist [3H]-2-[p-(2-carboxyethyl)- phenethylamino]-5'-N-ethylcarboxamidoadenosine, (CGS21680), a Ki of 15 (10-24) nmol.l-1 was obtained. In spontaneously beating right atria, GU285 competitively antagonized negative chronotropic effects of R-PIA with a pA2 of 8.7 +/- 0.3 and in electrically paced left atria, GU285 competitively antagonized negative inotropic effects of R-PIA with a pA2 of 9.0 +/- 0.1. In the potassium-arrested, perfused rat heart GU285 (1 mumol.l-1) antagonized only the high sensitivity, ADO A2B mediated component of the biphasic relaxation of the coronary vasculature produced by NECA. The low sensitivity component was unchanged. GU285 (1 mumol.kg-1) antagonized the negative chronotropic and hypotensive effects of the adenosine A1 agonist CPA in anaesthetized rats, producing a 10-fold rightward shift in the dose-response relationship. These data demonstrate that in the rat, GU285 is a potent, non-selective adenosine receptor antagonist that maintains its activity in vivo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Computer graphic analyses on a broad spectrum of adenosine receptor ligands has shown that both the A1 and A2 adenosine receptors have three binding sites. The spatial relationship of these three binding sites has been defined. Adenosine orientation at A1 and A2 is different.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVES To identify common genetic variants that predispose to caffeine-induced insomnia and to test whether genes whose expression changes in the presence of caffeine are enriched for association with caffeine-induced insomnia. DESIGN A hypothesis-free, genome-wide association study. SETTING Community-based sample of Australian twins from the Australian Twin Registry. PARTICIPANTS After removal of individuals who said that they do not drink coffee, a total of 2,402 individuals from 1,470 families in the Australian Twin Registry provided both phenotype and genotype information. MEASUREMENTS AND RESULTS A dichotomized scale based on whether participants reported ever or never experiencing caffeine-induced insomnia. A factor score based on responses to a number of questions regarding normal sleep habits was included as a covariate in the analysis. More than 2 million common single nucleotide polymorphisms (SNPs) were tested for association with caffeine-induced insomnia. No SNPs reached the genome-wide significance threshold. In the analysis that did not include the insomnia factor score as a covariate, the most significant SNP identified was an intronic SNP in the PRIMA1 gene (P = 1.4 x 10(-)(6), odds ratio = 0.68 [0.53 - 0.89]). An intergenic SNP near the GBP4 gene on chromosome 1 was the most significant upon inclusion of the insomnia factor score into the model (P = 1.9 x 10(-)(6), odds ratio = 0.70 [0.62 - 0.78]). A previously identified association with a polymorphism in the ADORA2A gene was replicated. CONCLUSIONS Several genes have been identified in the study as potentially influencing caffeine-induced insomnia. They will require replication in another sample. The results may have implications for understanding the biologic mechanisms underlying insomnia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known that adenosine 5'-triphosphate (ATP) is a cotransmitter in the heart. Additionally, ATP is released from ischemic and hypoxic myocytes. Therefore, cardiac-derived sources of ATP have the potential to modify cardiac function. ATP activates P2X(1-7) and P2Y(1-14) receptors; however, the presence of P2X and P2Y receptor subtypes in strategic cardiac locations such as the sinoatrial node has not been determined. An understanding of P2X and P2Y receptor localization would facilitate investigation of purine receptor function in the heart. Therefore, we used quantitative PCR and in situ hybridization to measure the expression of mRNA of all known purine receptors in rat left ventricle, right atrium and sinoatrial node (SAN), and human right atrium and SAN. Expression of mRNA for all the cloned P2 receptors was observed in the ventricles, atria, and SAN of the rat. However, their abundance varied in different regions of the heart. P2X(5) was the most abundant of the P2X receptors in all three regions of the rat heart. In rat left ventricle, P2Y(1), P2Y(2), and P2Y(14) mRNA levels were highest for P2Y receptors, while in right atrium and SAN, P2Y(2) and P2Y(14) levels were highest, respectively. We extended these studies to investigate P2X(4) receptor mRNA in heart from rats with coronary artery ligation-induced heart failure. P2X(4) receptor mRNA was upregulated by 93% in SAN (P < 0.05), while a trend towards an increase was also observed in the right atrium and left ventricle (not significant). Thus, P2X(4)-mediated effects might be modulated in heart failure. mRNA for P2X(4-7) and P2Y(1,2,4,6,12-14), but not P2X(2,3) and P2Y(11), was detected in human right atrium and SAN. In addition, mRNA for P2X(1) was detected in human SAN but not human right atrium. In human right atrium and SAN, P2X(4) and P2X(7) mRNA was the highest for P2X receptors. P2Y(1) and P2Y(2) mRNA were the most abundant for P2Y receptors in the right atrium, while P2Y(1), P2Y(2), and P2Y(14) were the most abundant P2Y receptor subtypes in human SAN. This study shows a widespread distribution of P2 receptor mRNA in rat heart tissues but a more restricted presence and distribution of P2 receptor mRNA in human atrium and SAN. This study provides further direction for the elucidation of P2 receptor modulation of heart rate and contractility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estrogen receptor (ER)-β has been shown to possess a tumor suppressive effect, and is a potential target for cancer therapy. Using gene-expression meta-analysis of human malignant pleural mesothelioma, we identified an ESR2 (ERβ coding gene) signature. High ESR2 expression was strongly associated with low succinate dehydrogenase B (SDHB) (which encodes a mitochondrial respiratory chain complex II subunit) expression. We demonstrate that SDHB loss induced ESR2 expression, and that activated ERβ, by over-expression or by selective agonist stimulation, negatively affected oxidative phosphorylation compromising mitochondrial complex II and IV activity. This resulted in reduced mitochondrial ATP production, increased glycolysis dependence and impaired cell proliferation. The observed in vitro effects were phenocopied in vivo using a selective ERβ agonist in a mesothelioma mouse model. On the whole, our data highlight an unforeseen interaction between ERβ-mediated tumor suppression and energy metabolism that may be exploited to improve on the therapy for clinical management of malignant mesothelioma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The vasodilator effects of adenosine receptor agonists, isoprenaline and histamine were examined in perfused heart preparations from young (4–6 weeks) and mature (12–20 weeks) rats. 2. Adenosine induced a biphasic concentration-dependent decrease in KCl (35 mM) raised coronary perfusion pressure in hearts from young and mature rats, suggesting the presence of both high- and low-affinity sites for adenosine receptors in the two age groups tested. In heart preparations from mature rats, vasodilator responses to adenosine were significantly reduced compared with responses observed in young rats. 3. Responses to 5′-N-ethylcarboxamidoadenosine (NECA) and 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine hydrochloride (CGS-21680) were reduced in preparations from mature rats, whereas the vasodilator actions of N6-cyclopentyladenosine (CPA) and N6-2-(4-aminophenyl)ethyladenosine (APNEA) did not change with age. 4. The results presented in this study suggest that several adenosine receptor subtypes mediate vasodilator responses in the coronary circulation of the rat and that a reduction in response to adenosine with age may be due to changes in the high-affinity receptor site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biphasic vasodilatory responses to adenosine and 5'-N-ethylcarboxamidoadenosine (NECA) were observed in the coronary vasculature of K(+)-arrested perfused rat hearts. Dose-response data for both agonists were best represented by two-site models. For adenosine, two sites with negative log ED50 (pED50) values of 8.1 +/- 0.1 (mean +/- S.E.M) and 5.2 +/- 0.1 were obtained, mediating 31 +/- 2% and 69 +/- 2% of the total response. In the presence of 8-phenyltheophylline, the vasodilatory response to adenosine remained best fitted to a two-site model with pED50 values of 7.0 +/- 0.2 and 5.4 +/- 0.2. The relative contribution of each site to the total response remained unchanged. For NECA, pED50 values of 9.6 +/- 0.1 and 6.8 +/- 0.2 were obtained, representing 48 +/- 3% and 52 +/- 3% of the sites, respectively. In contrast, ATP produced a monophasic response with a pED50 value of 8.8 +/- 0.1. These results provide evidence of adenosine receptor and response heterogeneity in the in situ coronary vasculature.