177 resultados para Active expiration
em Queensland University of Technology - ePrints Archive
Resumo:
Active Grids are a form of grid infrastructure where the grid network is active and programmable. These grids directly support applications with value added services such as data migration, compression, adaptation and monitoring. Services such as these are particularly important for eResearch applications which by their very nature are performance critical and data intensive. We propose an architecture for improving the flexibility of Active Grids through web services. These enable Active Grid services to be easily and flexibly configured, monitored and deployed from practically any platform or application. The architecture is called WeSPNI ('Web Services based on Programmable Networks Infrastructure'). We present the architecture together with some early experimental results on using web services to monitor data movement in an active grid.
Resumo:
Size distributions of expiratory droplets expelled during coughing and speaking and the velocities of the expiration air jets of healthy volunteers were measured. Droplet size was measured using the Interferometric Mie imaging (IMI) technique while the Particle Image Velocimetry (PIV) technique was used for measuring air velocity. These techniques allowed measurements in close proximity to the mouth and avoided air sampling losses. The average expiration air velocity was 11.7 m/s for coughing and 3.9 m/s for speaking. Under the experimental setting, evaporation and condensation effects had negligible impact on the measured droplet size. The geometric mean diameter of droplets from coughing was 13.5m and it was 16.0m for speaking (counting 1 to 100). The estimated total number of droplets expelled ranged from 947 – 2085 per cough and 112 – 6720 for speaking. The estimated droplet concentrations for coughing ranged from 2.4 - 5.2cm-3 per cough and 0.004 – 0.223 cm-3 for speaking.
Resumo:
Based on Newmark-β method, a structural vibration response is predicted. Through finding the appropriate control force parameters within certain ranges to optimize the objective function, the predictive control of the structural vibration is achieved. At the same time, the numerical simulation analysis of a two-storey frame structure with magneto-rheological (MR) dampers under earthquake records is carried out, and the parameter influence on structural vibration reduction is discussed. The results demonstrate that the semi-active control based on Newmark-β predictive algorithm is better than the classical control strategy based on full-state feedback control and has remarkable advantages of structural vibration reduction and control robustness.
Resumo:
During the past century, significant improvements in the prevention, detection and treatment of infectious disease have positively impacted upon quality and quantity of life for many people worldwide. Despite this progress, there are large numbers of people currently living in developing regions of the world where infectious disease continues unabated. SurfAid International is a humanitarian organisation that has brought significant health improvements to the people living on the Mentawai and Nias islands of Indonesia. The SurfAid International Schools Program aims to develop global citizenship and social responsibility by providing a bridge between school settings and the critical work of SurfAid International. This paper provides a rationale for the development of contextualised school based programs and identifies potential impact upon the thoughts and actions of young people in schools.
Resumo:
This paper presents an Active Gate Signaling scheme to reduce voltage/current spikes across insulated gate power switches in hard switching power electronic circuits. Voltage and/or current spikes may cause EMI noise. In addition, they increase voltage/current stress on the switch. Traditionally, a higher gate resistance is chosen to reduce voltage/current spikes. Since the switching loss will increase remarkably, an active gate voltage control scheme is developed to improve efficiency of hard switching circuits while the undesirable voltage and/or current spikes are minimized.