229 resultados para Acoustic Immittance Measures

em Queensland University of Technology - ePrints Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Axial acoustic wave propagation has been widely used in evaluating the mechanical properties of human bone in vivo. However, application of this technique to monitor soft tissues, such as tendon, has received comparatively little scientific attention. Laboratory-based research has established that axial acoustic wave transmission is not only related to the physical properties of equine tendon but is also proportional to tensile load to which it is exposed (Miles et al., 1996; Pourcelot et al., 2005). The reproducibility of the technique for in vivo measurements in human tendon, however, has not been established. The aim of this study was to evaluate the limits of agreement for repeated measures of the speed of sound (SoS) in human Achilles tendon in vivo. Methods: A custom built ultrasound device, consisting of an A-mode 1MHz emitter and two regularly spaced receivers, was used to measure the SoS in the mid-portion of the Achilles tendon in ten healthy males and ten females (mean age: 33.8 years, range 23-56 yrs; height: 1.73±0.08 m; weight: 68.4±15.3 kg). The emitter and receivers were held at fixed positions by a polyethylene frame and maintained in close contact with the skin overlying the tendon by means of elasticated straps. Repeated SoS measurements were taken with the subject prone (non-weightbearing and relaxed Achilles tendon) and during quiet bipedal and unipedal stance. In each instance, the device was detached and repositioned prior to measurement. Results: Limits of agreement for repeated SoS measures during non-weightbearing and bipedal and unipedal stance were ±53, ±28 and ±21 m/s, respectively. The average SoS in the non-weightbearing Achilles tendon was 1804±198 m/s. There was a significant increase in the average SoS during bilateral (2122±135 m/s) (P < 0.05) and unilateral (2221±79 m/s) stance (P < 0.05). Conclusions: Repeated SoS measures in human Achilles tendon were more reliable during stance than under non-weightbearing conditions. These findings are consistent with previous research in equine tendon in which lower variability in SoS was observed with increasing tensile load (Crevier-Denoix et al, 2009). Since the limits of agreement for Achilles tendon SoS are nearly 5% of the changes previously observed during walking and therapeutic heel raise exercises, acoustic wave transmission provides a promising new non-invasive method for determining tendon properties during sports and rehabilitation related activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. In isotropic materials, the speed of acoustic wave propagation is governed by the bulk modulus and density. For tendon, which is a structural composite of fluid and collagen, however, there is some anisotropy requiring an adjustment for Poisson's ratio. This paper explores these relationships using data collected, in vivo, on human Achilles tendon and then compares estimates of elastic modulus and hysteresis against published values from in vitro mechanical tests. Methods. Measurements using conventional B-model ultrasound imaging, inverse dynamics and acoustic transmission techniques were used to determine dimensions, loading conditions and longitudinal speed of sound in the Achilles tendon during a series of isometric plantar flexion exercises against body weight. Upper and lower bounds for speed of sound versus tensile stress in the tendon were then modelled and estimates of the elastic modulus and hysteresis of the Achilles tendon derived. Results. Axial speed of sound varied between 1850 and 2090 ms-1 with a non-linear, asymptotic dependency on the level of tensile stress (5-35 MPa) in the tendon. Estimates derived for the elastic modulus of the Achilles tendon ranged between 1-2 GPa. Hysteresis derived from models of the stress-strain relationship, ranged from 3-11%. Discussion. Estimates of elastic modulus agree closely with those previously reported from direct measurements obtained via mechanical tensile tests on major weight bearing tendons in vitro [1,2]. Hysteresis derived from models of the stress-strain relationship is consistent with direct measures from various mamalian tendon (7-10%) but is lower than previous estimates in human tendon (17-26%) [3]. This non-invasive method would appear suitable for monitoring changes in tendon properties during dynamic sporting activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The requirement to monitor the rapid pace of environmental change due to global warming and to human development is producing large volumes of data but placing much stress on the capacity of ecologists to store, analyse and visualise that data. To date, much of the data has been provided by low level sensors monitoring soil moisture, dissolved nutrients, light intensity, gas composition and the like. However, a significant part of an ecologist’s work is to obtain information about species diversity, distributions and relationships. This task typically requires the physical presence of an ecologist in the field, listening and watching for species of interest. It is an extremely difficult task to automate because of the higher order difficulties in bandwidth, data management and intelligent analysis if one wishes to emulate the highly trained eyes and ears of an ecologist. This paper is concerned with just one part of the bigger challenge of environmental monitoring – the acquisition and analysis of acoustic recordings of the environment. Our intention is to provide helpful tools to ecologists – tools that apply information technologies and computational technologies to all aspects of the acoustic environment. The on-line system which we are building in conjunction with ecologists offers an integrated approach to recording, data management and analysis. The ecologists we work with have different requirements and therefore we have adopted the toolbox approach, that is, we offer a number of different web services that can be concatenated according to need. In particular, one group of ecologists is concerned with identifying the presence or absence of species and their distributions in time and space. Another group, motivated by legislative requirements for measuring habitat condition, are interested in summary indices of environmental health. In both case, the key issues are scalability and automation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of structural health monitoring (SHM) involves monitoring a structure over a period of time using appropriate sensors, extracting damage sensitive features from the measurements made by the sensors and analysing these features to determine the current state of the structure. Various techniques are available for structural health monitoring of structures and acoustic emission (AE) is one technique that is finding an increasing use. Acoustic emission waves are the stress waves generated by the mechanical deformation of materials. AE waves produced inside a structure can be recorded by means of sensors attached on the surface. Analysis of these recorded signals can locate and assess the extent of damage. This paper describes preliminary studies on the application of AE technique for health monitoring of bridge structures. Crack initiation or structural damage will result in wave propagation in solid and this can take place in various forms. Propagation of these waves is likely to be affected by the dimensions, surface properties and shape of the specimen. This, in turn, will affect source localization. Various laboratory test results will be presented on source localization, using pencil lead break tests. The results from the tests can be expected to aid in enhancement of knowledge of acoustic emission process and development of effective bridge structure diagnostics system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cutaneous malignant melanoma (CMM) is a major health issue in Queensland, Australia, which has the world’s highest incidence. Recent molecular and epidemiologic studies suggest that CMM arises through multiple etiological pathways involving gene-environment interactions. Understanding the potential mechanisms leading to CMM requires larger studies than those previously conducted. This article describes the design and baseline characteristics of Q-MEGA, the Queensland Study of Melanoma: Environmental and Genetic Associations, which followed up 4 population-based samples of CMM patients in Queensland, including children, adolescents, men aged over 50, and a large sample of adult cases and their families, including twins. Q-MEGA aims to investigate the roles of genetic and environmental factors, and their interaction, in the etiology of melanoma. Three thousand, four hundred and seventy-one participants took part in the follow-up study and were administered a computer-assisted telephone interview in 2002-2005. Updated data on environmental and phenotypic risk factors, and 2777 blood samples were collected from interviewed participants as well as a subset of relatives. This study provides a large and well-described population-based sample of CMM cases with follow-up data. Characteristics of the cases and repeatability of sun exposure and phenotype measures between the baseline and the follow-up surveys, from 6 to 17 years later, are also described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, cognitive load analysis via acoustic- and CAN-Bus-based driver performance metrics is employed to assess two different commercial speech dialog systems (SDS) during in-vehicle use. Several metrics are proposed to measure increases in stress, distraction and cognitive load and we compare these measures with statistical analysis of the speech recognition component of each SDS. It is found that care must be taken when designing an SDS as it may increase cognitive load which can be observed through increased speech response delay (SRD), changes in speech production due to negative emotion towards the SDS, and decreased driving performance on lateral control tasks. From this study, guidelines are presented for designing systems which are to be used in vehicular environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to develop and assess the reliability and validity of a pair of self-report questionnaires to measure self-efficacy and expectancy associated with benzodiazepine use, the Benzodiazepine Refusal Self- Efficacy Questionnaire (BRSEQ) and the Benzodiazepine Expectancy Questionnaire (BEQ). Internal structure of the questionnaireswas established by principal component analysis (PCA) in a sample of 155 respondents, and verified by confirmatory factor analyses (CFA) in a second independent sample (n=139) using structural equation modeling. The PCA of the BRSEQ resulted in a 16-item, 4-factor scale, and the BEQ formed an 18-item, 2-factor scale. Both scales were internally reliable. CFA confirmed these internal structures and reduced the questionnaires to a 14-item self-efficacy scale and a 12-item expectancy scale. Lower self-efficacy and higher expectancy were moderately associated with higher scores on the SDS-B. The scales provide reliable measures for assessing benzodiazepine self-efficacy and expectancies. Future research will examine the utility of the scales in prospective prediction of benzodiazepine cessation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural health monitoring (SHM) is the term applied to the procedure of monitoring a structure’s performance, assessing its condition and carrying out appropriate retrofitting so that it performs reliably, safely and efficiently. Bridges form an important part of a nation’s infrastructure. They deteriorate due to age and changing load patterns and hence early detection of damage helps in prolonging the lives and preventing catastrophic failures. Monitoring of bridges has been traditionally done by means of visual inspection. With recent developments in sensor technology and availability of advanced computing resources, newer techniques have emerged for SHM. Acoustic emission (AE) is one such technology that is attracting attention of engineers and researchers all around the world. This paper discusses the use of AE technology in health monitoring of bridge structures, with a special focus on analysis of recorded data. AE waves are stress waves generated by mechanical deformation of material and can be recorded by means of sensors attached to the surface of the structure. Analysis of the AE signals provides vital information regarding the nature of the source of emission. Signal processing of the AE waveform data can be carried out in several ways and is predominantly based on time and frequency domains. Short time Fourier transform and wavelet analysis have proved to be superior alternatives to traditional frequency based analysis in extracting information from recorded waveform. Some of the preliminary results of the application of these analysis tools in signal processing of recorded AE data will be presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need for large scale environmental monitoring to manage environmental change is well established. Ecologists have long used acoustics as a means of monitoring the environment in their field work, and so the value of an acoustic environmental observatory is evident. However, the volume of data generated by such an observatory would quickly overwhelm even the most fervent scientist using traditional methods. In this paper we present our steps towards realising a complete acoustic environmental observatory - i.e. a cohesive set of hardware sensors, management utilities, and analytical tools required for large scale environmental monitoring. Concrete examples of these elements, which are in active use by ecological scientists, are also presented