105 resultados para Accident Investigations.
em Queensland University of Technology - ePrints Archive
Resumo:
In 2008, there were a number of areas in the criminal law in Queensland in which there was law reform activity. These include jury reform, accident and provocation.
Resumo:
Fatigue in the postnatal period is such a common experience for most mothers that the term ‘postpartum fatigue’ (PPF) has been coined to describe it. When new mothers experience extreme fatigue, it follows that their physical health, mental health, and social-wellbeing is negatively affected. It is interesting to note that there is a distinct lack of empirical investigations focusing on the link between PPF and increased risk of injury; particularly when the links between fatigue and increased risk of road crashes are well documented. The purpose of this investigation was to undertake pilot research to develop an understanding of the duration of PPF and the performance impairments experienced by new mothers when involved in safety-sensitive activities, such as driving a motor vehicle. Semi-structured interviews were undertaken with women (N = 24) at 12 weeks postpartum living in South-east Queensland, Australia. Key themes were identified; with a particular emphasis towards understanding the link between the participant’s experience of postpartum fatigue and the impact this has on their overall cognitive and physiological functioning, as well as their experience of the driving task. Further, sleep/wake data was collected and using the Karolinska Sleepiness Scale (KSS) the potential crash risk for this group of mothers is discussed. It is proposed that the findings of this investigation could be used to improve current knowledge among new mothers and practitioners regarding the mechanisms and consequences of fatigue and to inform interventions that lead to a decreased risk of injury associated with postpartum fatigue.
Resumo:
Despite increasingly sophisticated speed management strategies, speeding remains a significant contributing factor in 25% of Australia’s fatal crashes. Excessive speed is also a recognised contributor to road trauma in rapidly motorising countries such as China, where increases in vehicle ownership and new drivers, and a high proportion of vulnerable road users all contribute to a high road trauma rate. Speed choice is a voluntary behaviour. Therefore, driver perceptions are important to our understanding of the nature of speeding. This paper reports preliminary qualitative (focus groups) and quantitative (survey) investigations of the perceptions of drivers in Queensland and Beijing. Drivers’ definitions of speeding as well as their perceptions of the influence of legal factors on their reported speeds were explored. Survey participants were recruited from petrol stations (Queensland, n=833) and car washes (Beijing, n=299). Similarities were evident in justifications for exceeding speed limits across samples. Excessive speeds were not deemed as ‘speeding’ when drivers considered that they were safe and under their control, or when speed limits were seen as unreasonably low. This appears linked to perceptions of enforcement tolerances in some instances with higher perceived enforcement thresholds noted in China. Encouragingly, drivers in both countries reported a high perceived risk of apprehension if speeding. However, a substantial proportion of both samples also indicated perceptions of low certainty of receiving penalties when apprehended. Chinese drivers considered sanctions less severe than did Australian drivers. In addition, strategies to avoid detection and penalties were evident in both samples, with Chinese drivers reporting a broader range of avoidant techniques. Implications of the findings for future directions in speed management in both countries are discussed.
Resumo:
This article describes some of the issues that teachers might encounter when scaffolding students’ thinking during mathematical investigations. It describes four episodes where a teacher’s scaffolding failed to support students’ mathematical thinking and explores the reasons why the scaffolding was ineffective. Understanding what is ineffective and why is one way to improve pedagogical practice. As a background to these episodes, we first provide an overview of the mathematical investigation. Our paper concludes with some recommendations for judicious scaffolding during investigations.
Resumo:
The results of a numerical investigation into the errors for least squares estimates of function gradients are presented. The underlying algorithm is obtained by constructing a least squares problem using a truncated Taylor expansion. An error bound associated with this method contains in its numerator terms related to the Taylor series remainder, while its denominator contains the smallest singular value of the least squares matrix. Perhaps for this reason the error bounds are often found to be pessimistic by several orders of magnitude. The circumstance under which these poor estimates arise is elucidated and an empirical correction of the theoretical error bounds is conjectured and investigated numerically. This is followed by an indication of how the conjecture is supported by a rigorous argument.
Resumo:
Concern regarding the health effects of indoor air quality has grown in recent years, due to the increased prevalence of many diseases, as well as the fact that many people now spend most of their time indoors. While numerous studies have reported on the dynamics of aerosols indoors, the dynamics of bioaerosols in indoor environments are still poorly understood and very few studies have focused on fungal spore dynamics in indoor environments. Consequently, this work investigated the dynamics of fungal spores in indoor air, including fungal spore release and deposition, as well as investigating the mechanisms involved in the fungal spore fragmentation process. In relation to the investigation of fungal spore dynamics, it was found that the deposition rates of the bioaerosols (fungal propagules) were in the same range as the deposition rates of nonbiological particles and that they were a function of their aerodynamic diameters. It was also found that fungal particle deposition rates increased with increasing ventilation rates. These results (which are reported for the first time) are important for developing an understanding of the dynamics of fungal spores in the air. In relation to the process of fungal spore fragmentation, important information was generated concerning the airborne dynamics of the spores, as well as the part/s of the fungi which undergo fragmentation. The results obtained from these investigations into the dynamics of fungal propagules in indoor air significantly advance knowledge about the fate of fungal propagules in indoor air, as well as their deposition in the respiratory tract. The need to develop an advanced, real-time method for monitoring bioaerosols has become increasingly important in recent years, particularly as a result of the increased threat from biological weapons and bioterrorism. However, to date, the Ultraviolet Aerodynamic Particle Sizer (UVAPS, Model 3312, TSI, St Paul, MN) is the only commercially available instrument capable of monitoring and measuring viable airborne micro-organisms in real-time. Therefore (for the first time), this work also investigated the ability of the UVAPS to measure and characterise fungal spores in indoor air. The UVAPS was found to be sufficiently sensitive for detecting and measuring fungal propagules. Based on fungal spore size distributions, together with fluorescent percentages and intensities, it was also found to be capable of discriminating between two fungal spore species, under controlled laboratory conditions. In the field, however, it would not be possible to use the UVAPS to differentiate between different fungal spore species because the different micro-organisms present in the air may not only vary in age, but may have also been subjected to different environmental conditions. In addition, while the real-time UVAPS was found to be a good tool for the investigation of fungal particles under controlled conditions, it was not found to be selective for bioaerosols only (as per design specifications). In conclusion, the UVAPS is not recommended for use in the direct measurement of airborne viable bioaerosols in the field, including fungal particles, and further investigations into the nature of the micro-organisms, the UVAPS itself and/or its use in conjunction with other conventional biosamplers, are necessary in order to obtain more realistic results. Overall, the results obtained from this work on airborne fungal particle dynamics will contribute towards improving the detection capabilities of the UVAPS, so that it is capable of selectively monitoring and measuring bioaerosols, for which it was originally designed. This work will assist in finding and/or improving other technologies capable of the real-time monitoring of bioaerosols. The knowledge obtained from this work will also be of benefit in various other bioaerosol applications, such as understanding the transport of bioaerosols indoors.
Resumo:
The biomechanical or biophysical principles can be applied to study biological structures in their modern or fossil form. Bone is an important tissue in paleontological studies as it is a commonly preserved element in most fossil vertebrates, and can often allow its microstructures such as lacuna and canaliculi to be studied in detail. In this context, the principles of Fluid Mechanics and Scaling Laws have been previously applied to enhance the understanding of bone microarchitecture and their implications for the evolution of hydraulic structures to transport fluid. It has been shown that the microstructure of bone has evolved to maintain efficient transport between the nutrient supply and cells, the living components of the tissue. Application of the principle of minimal expenditure of energy to this analysis shows that the path distance comprising five or six lamellar regions represents an effective limit for fluid and solute transport between the nutrient supply and cells; beyond this threshold, hydraulic resistance in the network increases and additional energy expenditure is necessary for further transportation. This suggests an optimization of the size of bone’s building blocks (such as osteon or trabecular thickness) to meet the metabolic demand concomitant to minimal expenditure of energy. This biomechanical aspect of bone microstructure is corroborated from the ratio of osteon to Haversian canal diameters and scaling constants of several mammals considered in this study. This aspect of vertebrate bone microstructure and physiology may provide a basis of understanding of the form and function relationship in both extinct and extant taxa.
Resumo:
Digital forensics investigations aim to find evidence that helps confirm or disprove a hypothesis about an alleged computer-based crime. However, the ease with which computer-literate criminals can falsify computer event logs makes the prosecutor's job highly challenging. Given a log which is suspected to have been falsified or tampered with, a prosecutor is obliged to provide a convincing explanation for how the log may have been created. Here we focus on showing how a suspect computer event log can be transformed into a hypothesised actual sequence of events, consistent with independent, trusted sources of event orderings. We present two algorithms which allow the effort involved in falsifying logs to be quantified, as a function of the number of `moves' required to transform the suspect log into the hypothesised one, thus allowing a prosecutor to assess the likelihood of a particular falsification scenario. The first algorithm always produces an optimal solution but, for reasons of efficiency, is suitable for short event logs only. To deal with the massive amount of data typically found in computer event logs, we also present a second heuristic algorithm which is considerably more efficient but may not always generate an optimal outcome.
Resumo:
Scoping Project: Currently no national or structured learning framework available in Aus or NZ Current Project: Develop a national training program & capability framework for rail incident investigators - Establish the potential market demand - Define the curricula for a multi-level national training program - Explore training providers & delivery options