3 resultados para ARTERIOSCLEROSIS

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Epidemiological studies have shown a reduced incidence of cardiovascular disease in the Mediterranean population attributed to the consumption of dietary olive oil rich in antioxidants. This has lead to increased interest in the antioxidant properties of other phenolic compounds of olive tree products. It has been suggested that olive leaf extract may also have health benefits due to its antioxidant and anti-inflammatory activities. Antioxidants can prevent the effects of oxidative metabolism by scavenging free radicals and decreasing the hyperactivity of platelets associated with the development of occlusive thrombosis. No studies to date have investigated the effects of olive leaf extract on platelet function to our knowledge. Improved understanding of the antioxidant properties of olive leaf extract and its effect on platelet function could lead to improved cardiovascular health. Objective The current study used an olive leaf extract prepared from the Olea europaea L. tree. The aim was to determine if polyphenols in olive leaf extract would reduce platelet activity and, to establish an optimal dose in vitro that would reduce platelet aggregation and ATP release. Design Eleven subjects with normal platelet counts (150–400 x 109/L) were recruited for the current in vitro study. Olive leaf extract was added to citrated whole blood to obtain five concentrations ranging from 5.4 ug/mL to 54.0 ug/mL for a dose response curve. Baseline samples, without olive leaf extract were used as a negative control for each subject. After 2 hours incubation with olive leaf extract samples were analyzed for platelet aggregation and ATP release from platelets stimulated by the addition of collagen. Results Whole blood analysis (n=11) showed a clear dose-dependant reduction in platelet aggregation with the increasing olive leaf extract concentrations (p<0.0001). There was also a similar decrease in ATP release from collagen stimulated platelets (p=0.02). Conclusion In the current study the olive leaf extract obtained from Olea europaea L. inhibited platelet aggregation and ATP release from collagen stimulated platelets in vitro. This study suggests olive leaf extract may prevent occlusive thrombosis by reducing platelet hyperactivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Platelet-derived microparticles (PMPs) which are produced during platelet activation contribute to coagulation1 and bind to traumatized endothelium in an animal model2. Such endothelial injury occurs during percutaneous transluminal coronary angioplasty (PTCA), a procedure which restores the diameter of occluded coronary arteries using balloon inflations. However, re-occlusions subsequently develop in 20-25% of patients3, although this is limited by treatment with anti-platelet glycoprotein IIb/IIIa receptor drugs such as abciximab4. However, abciximab only partially decreases the need for revascularisation5, and therefore other mechanisms appear to be involved. As platelet activation occurs during PTCA, it is likely that PMPs may be produced and contribute to restenosis. This study population consisted of 113 PTCA patients, of whom 38 received abciximab. Paired peripheral arterial blood samples were obtained from the PTCA sheath: 1) following heparinisation (baseline); and 2) subsequent to all vessel manipulation (post-PTCA). Blood was prepared with an anti-CD61 (glycoprotein IIIa) fluorescence conjugated antibody to identify PMPs using flow cytometry, and PMP results expressed as a percentage of all CD61 events. The level of PMPs increased significantly from baseline following PTCA in the without abciximab group (paired t test, P=0.019). However, there was no significant change in the level of PMPs following PTCA in patients who received abciximab. Baseline clinical characteristics between patient groups were similar, although patients administered abciximab had more complex PTCA procedures, such as increased balloon inflation pressures (ANOVA, P=0.0219). In this study, we have clearly demonstrated that the level of CD61-positive PMPs increased during PTCA. This trend has been demonstrated previously, although a low sample size prevented statistical significance being attained6. The results of our work also demonstrate that there was no increase in PMPs after PTCA with abiciximab treatment. The increased PMPs may adhere to traumatized endothelium, contributing to re-occlusion of the arteries, but this remains to be determined. References: (1) Holme PA, Brosstad F, Solum NO. Blood Coagulation and Fibrinolysis. 1995;6:302-310. (2) Merten M, Pakala R, Thiagarajan P, Benedict CR. Circulation. 1999;99:2577-2582. (3) Califf RM. American Heart Journal.1995;130:680-684. (4) Coller BS, Scudder LE. Blood. 1985;66:1456-1459. (5) Topol EJ, Califf RM, Weisman HF, Ellis SG, Tcheng JE, Worley S, Ivanhoe R, George BS, Fintel D, Weston M, Sigmon K, Anderson KM, Lee KL, Willerson JT on behalf of the EPIC investigators. Lancet. 1994;343:881-886. (6) Scharf RE, Tomer A, Marzec UM, Teirstein PS, Ruggeri ZM, Harker LA. Arteriosclerosis and Thrombosis. 1992;12:1475-87.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The selection of patients for vascular interventions has been solely based on luminal stenosis and symptomatology. However, histological data from both the coronary and carotid vasculature suggest that other plaque features such as inflammation may be more important in predicting future thromboembolic events. Ultrasmall superparamagnetic iron oxide (USPIO) contrast agents have been used for noninvasive MRI assessment of atherosclerotic plaque inflammation in humans. It has reached the stage of development to have been recently used in an interventional drug study to not only assess inflammatory progression but also select patients at high risk. This article reviews the basic science behind the use of USPIO contrast agents in atheroma MR imaging, experimental work in animals, and how this has led to the emergence of this promising targeted imaging platform for assessment of high risk carotid atherosclerosis in humans.