200 resultados para AM1 calculation
em Queensland University of Technology - ePrints Archive
Resumo:
In many countries the calculation of habitable dwelling surface is characterised by a chaotic variety of calculation variants hardly comprehensible for the end user - sometimes not even reproducible for the expert. Therefore dossiers were analysed on the basis of a random choice in order to determine the method according to which the habitable dwelling surface was measured and to find out wether customers can scrutinize the calculations. The paper compares Sydney and Munich, where in both cases property prices are situated at the high end of the market
Resumo:
There are increasing indications that the contribution of holding costs and its impact on housing affordability is very significant. Their importance and perceived high level impact can be gauged from considering the unprecedented level of attention policy makers have given them recently. This may be evidenced by the embedding of specific strategies to address burgeoning holding costs (and particularly those cost savings associated with streamlining regulatory assessment) within statutory instruments such as the Queensland Housing Affordability Strategy, and the South East Queensland Regional Plan. However, several key issues require further investigation. Firstly, the computation and methodology behind the calculation of holding costs varies widely. In fact, it is not only variable, but in some instances completely ignored. Secondly, some ambiguity exists in terms of the inclusion of various elements of holding costs and assessment of their relative contribution. Perhaps this may in part be explained by their nature: such costs are not always immediately apparent. They are not as visible as more tangible cost items associated with greenfield development such as regulatory fees, government taxes, acquisition costs, selling fees, commissions and others. Holding costs are also more difficult to evaluate since for the most part they must be ultimately assessed over time in an ever-changing environment based on their strong relationship with opportunity cost which is in turn dependant, inter alia, upon prevailing inflation and / or interest rates. This paper seeks to provide a more detailed investigation of those elements related to holding costs, and in so doing determine the size of their impact specifically on the end user. It extends research in this area clarifying the extent to which holding costs impact housing affordability. Geographical diversity indicated by the considerable variation between various planning instruments and the length of regulatory assessment periods suggests further research should adopt a case study approach in order to test the relevance of theoretical modelling conducted.
Resumo:
Bearing damage in modern inverter-fed AC drive systems is more common than in motors working with 50 or 60 Hz power supply. Fast switching transients and common mode voltage generated by a PWM inverter cause unwanted shaft voltage and resultant bearing currents. Parasitic capacitive coupling creates a path to discharge current in rotors and bearings. In order to analyze bearing current discharges and their effect on bearing damage under different conditions, calculation of the capacitive coupling between the outer and inner races is needed. During motor operation, the distances between the balls and races may change the capacitance values. Due to changing of the thickness and spatial distribution of the lubricating grease, this capacitance does not have a constant value and is known to change with speed and load. Thus, the resultant electric field between the races and balls varies with motor speed. The lubricating grease in the ball bearing cannot withstand high voltages and a short circuit through the lubricated grease can occur. At low speeds, because of gravity, balls and shaft voltage may shift down and the system (ball positions and shaft) will be asymmetric. In this study, two different asymmetric cases (asymmetric ball position, asymmetric shaft position) are analyzed and the results are compared with the symmetric case. The objective of this paper is to calculate the capacitive coupling and electric fields between the outer and inner races and the balls at different motor speeds in symmetrical and asymmetrical shaft and balls positions. The analysis is carried out using finite element simulations to determine the conditions which will increase the probability of high rates of bearing failure due to current discharges through the balls and races.
Resumo:
Knowledge of the accuracy of dose calculations in intensity-modulated radiotherapy of the head and neck is essential for clinical confidence in these highly conformal treatments. High dose gradients are frequently placed very close to critical structures, such as the spinal cord, and good coverage of complex shaped nodal target volumes is important for long term-local control. A phantom study is presented comparing the performance of standard clinical pencil-beam and collapsed-cone dose algorithms to Monte Carlo calculation and three-dimensional gel dosimetry measurement. All calculations and measurements are normalized to the median dose in the primary planning target volume, making this a purely relative study. The phantom simulates tissue, air and bone for a typical neck section and is treated using an inverse-planned 5-field IMRT treatment, similar in character to clinically used class solutions. Results indicate that the pencil-beam algorithm fails to correctly model the relative dose distribution surrounding the air cavity, leading to an overestimate of the target coverage. The collapsed-cone and Monte Carlo results are very similar, indicating that the clinical collapsed-cone algorithm is perfectly sufficient for routine clinical use. The gel measurement shows generally good agreement with the collapsed-cone and Monte Carlo calculated dose, particularly in the spinal cord dose and nodal target coverage, thus giving greater confidence in the use of this class solution.
Resumo:
Many of the costs associated with greenfield residential development are apparent and tangible. For example, regulatory fees, government taxes, acquisition costs, selling fees, commissions and others are all relatively easily identified since they represent actual costs incurred at a given point in time. However, identification of holding costs are not always immediately evident since by contrast they characteristically lack visibility. One reason for this is that, for the most part, they are typically assessed over time in an ever-changing environment. In addition, wide variations exist in development pipeline components: they are typically represented from anywhere between a two and over sixteen years time period - even if located within the same geographical region. Determination of the starting and end points, with regards holding cost computation, can also prove problematic. Furthermore, the choice between application of prevailing inflation, or interest rates, or a combination of both over time, adds further complexity. Although research is emerging in these areas, a review of the literature reveals attempts to identify holding cost components are limited. Their quantification (in terms of relative weight or proportionate cost to a development project) is even less apparent; in fact, the computation and methodology behind the calculation of holding costs varies widely and in some instances completely ignored. In addition, it may be demonstrated that ambiguities exists in terms of the inclusion of various elements of holding costs and assessment of their relative contribution. Yet their impact on housing affordability is widely acknowledged to be profound, with their quantification potentially maximising the opportunities for delivering affordable housing. This paper seeks to build on earlier investigations into those elements related to holding costs, providing theoretical modelling of the size of their impact - specifically on the end user. At this point the research is reliant upon quantitative data sets, however additional qualitative analysis (not included here) will be relevant to account for certain variations between expectations and actual outcomes achieved by developers. Although this research stops short of cross-referencing with a regional or international comparison study, an improved understanding of the relationship between holding costs, regulatory charges, and housing affordability results.
Resumo:
Power load flow analysis is essential for system planning, operation, development and maintenance. Its application on railway supply system is no exception. Railway power supplies system distinguishes itself in terms of load pattern and mobility, as well as feeding system structure. An attempt has been made to apply probability load flow (PLF) techniques on electrified railways in order to examine the loading on the feeding substations and the voltage profiles of the trains. This study is to formulate a simple and reliable model to support the necessary calculations for probability load flow analysis in railway systems with autotransformer (AT) feeding system, and describe the development of a software suite to realise the computation.
Resumo:
This letter is in response to the recently published article “Evaluation of two self-referent foot health instruments” by Robert Trevethan (RT) and is in regard to the scale scores he derived when using the quality of life measure, the Foot Health Status Questionnaire [1]. Unfortunately, the journal reviewers and editor did not identify, or address, a fundamental flaw in the methodology of this paper. Subsequently, the inference drawn from this paper could, in all reasonableness, mislead the reader
Resumo:
This technical report describes the methods used to obtain a list of acoustic indices that are used to characterise the structure and distribution of acoustic energy in recordings of the natural environment. In particular it describes methods for noise reduction from recordings of the environment and a fast clustering algorithm used to estimate the spectral richness of long recordings.
Resumo:
Fast calculation of quantities such as in-cylinder volume and indicated power is important in internal combustion engine research. Multiple channels of data including crank angle and pressure were collected for this purpose using a fully instrumented diesel engine research facility. Currently, existing methods use software to post-process the data, first calculating volume from crank angle, then calculating the indicated work and indicated power from the area enclosed by the pressure-volume indicator diagram. Instead, this work investigates the feasibility of achieving real-time calculation of volume and power via hardware implementation on Field Programmable Gate Arrays (FPGAs). Alternative hardware implementations were investigated using lookup tables, Taylor series methods or the CORDIC (CoOrdinate Rotation DIgital Computer) algorithm to compute the trigonometric operations in the crank angle to volume calculation, and the CORDIC algorithm was found to use the least amount of resources. Simulation of the hardware based implementation showed that the error in the volume and indicated power is less than 0.1%.
Resumo:
The feasibility of real-time calculation of parameters for an internal combustion engine via reconfigurable hardware implementation is investigated as an alternative to software computation. A detailed in-hardware field programmable gate array (FPGA)-based design is developed and evaluated using input crank angle and in-cylinder pressure data from fully instrumented diesel engines in the QUT Biofuel Engine Research Facility (BERF). Results indicate the feasibility of employing a hardware-based implementation for real-time processing for speeds comparable to the data sampling rate currently used in the facility, with acceptably low level of discrepancies between hardware and software-based calculation of key engine parameters.
Resumo:
The hydrogenation kinetics of Mg is slow, impeding its application for mobile hydrogen storage. We demonstrate by ab initio density functional theory (DFT) calculations that the reaction path can be greatly modified by adding transition metal catalysts. Contrasting with Ti doping, a Pd dopant will result in a very small activation barrier for both dissociation of molecular hydrogen and diffusion of atomic H on the Mg surface. This new computational finding supports for the first time by ab initio simulationthe proposed hydrogen spillover mechanism for rationalizing experimentally observed fast hydrogenation kinetics for Pd-capped Mg materials.
Resumo:
The generation of a correlation matrix from a large set of long gene sequences is a common requirement in many bioinformatics problems such as phylogenetic analysis. The generation is not only computationally intensive but also requires significant memory resources as, typically, few gene sequences can be simultaneously stored in primary memory. The standard practice in such computation is to use frequent input/output (I/O) operations. Therefore, minimizing the number of these operations will yield much faster run-times. This paper develops an approach for the faster and scalable computing of large-size correlation matrices through the full use of available memory and a reduced number of I/O operations. The approach is scalable in the sense that the same algorithms can be executed on different computing platforms with different amounts of memory and can be applied to different problems with different correlation matrix sizes. The significant performance improvement of the approach over the existing approaches is demonstrated through benchmark examples.