6 resultados para A. glomerata
em Queensland University of Technology - ePrints Archive
Resumo:
Genetic variation is the resource animal breeders exploit in stock improvement programs. Both the process of selection and husbandry practices employed in aquaculture will erode genetic variation levels overtime, hence the critical resource can be lost and this may compromise future genetic gains in breeding programs. The amount of genetic variation in five lines of Sydney Rock Oyster (SRO) that had been selected for QX (Queensland unknown) disease resistance were examined and compared with that in a wild reference population using seven specific SRO microsatellite loci. The five selected lines had significantly lower levels of genetic diversity than did the wild reference population with allelic diversity declining approximately 80%, but impacts on heterozygosity per locus were less severe. Significant deficiencies in heterozygotes were detected at six of the seven loci in both mass selected lines and the wild reference population. Against this trend however, a significant excess of heterozygotes was recorded at three loci Sgo9, Sgo14 and Sgo21 in three QX disease resistant lines (#2, #5 and #13). All populations were significantly genetic differentiated from each other based on pairwise FST values. A neighbour joining tree based on DA genetic distances showed a clear separation between all culture and wild populations. Results of this study show clearly, that the impacts of the stock improvement program for SRO has significantly eroded natural levels of genetic variation in the culture lines. This could compromise long-term genetic gains and affect sustainability of the SRO breeding program over the long-term.
Resumo:
The complete nucleotide sequence of Subterranean clover mottle virus (SCMoV) genomic RNA has been determined. The SCMoV genome is 4,258 nucleotides in length. It shares most nucleotide and amino acid sequence identity with the genome of Lucerne transient streak virus (LTSV). SCMoV RNA encodes four overlapping open reading frames and has a genome organisation similar to that of Cocksfoot mottle virus (CfMV). ORF1 and ORF4 are predicted to encode single proteins. ORF2 is predicted to encode two proteins that are derived from a -1 translational frameshift between two overlapping reading frames (ORF2a and ORF2b). A search of amino acid databases did not find a significant match for ORF1 and the function of this protein remains unclear. ORF2a contains a motif typical of chymotrypsin-like serine proteases and ORF2b has motifs characteristically present in positive-stranded RNA-dependent RNA polymerases. ORF4 is likely to be expressed from a subgenomic RNA and encodes the viral coat protein. The ORF2a/ORF2b overlapping gene expression strategy used by SCMoV and CfMV is similar to that of the poleroviruses and differ from that of other published sobemoviruses. These results suggest that the sobemoviruses could now be divided into two distinct subgroups based on those that express the RNA-dependent RNA polymerase from a single, in-frame polyprotein, and those that express it via a -1 translational frameshifting mechanism.
Resumo:
The Sydney rock oyster (Saccostrea glomerata) (SRO) is an oyster species that only occurs in estuaries along Australia's east coast. The SRO industry evolved from commercial gathering of oyster in the 1790s to a high production volume aquaculture industry in the 1970s. However, since the late 1970s the SRO industry has experienced a significant and continuous decline in production quantities and the industry's future commercial viably appears to be uncertain. The aim of this study was to review the history and the status of the SRO industry and to discuss the potential future prospects of this industry. This study summarised findings of the existing literature about the industry and defined development stages of the industry. Particular focus was put on the more recent development within the industry (1980s-present) which has not been covered adequately in the existing literature. The finding from this study revealed that major issues of the industry are linked to the management of prevailing diseases, the handling of water quality impairments from increasing coastal development, increasing competition from Australia's Pacific oyster (Crassostrea gigas) industry and the current socio-economic profile of the industry. The study also found that policy makers are currently confronted by the dilemma of saving a "dying art". Findings from this industry review may be vital for current and future fisheries managers and stakeholders as a basis for reviewing industry management and development strategies. This review may also be of interest for other aquaculture industries and fisheries who are dealing with similar challenges as the SRO industry.
Resumo:
Socio-economic characteristics such as age, gender, educational attainment, employment status, and income contain vital information about how an industry may respond to changing circumstances, and hence are of importance to decision makers. While some socio-economic studies exist, relatively little attention has been given to fishery and aquaculture industries in regards to their socio-economic profiles and their role in the development prospects of these industries. In this study, by way of example, we focus on Australia’s Sydney rock oyster (Saccostrea glomerata) (SRO) industry. The aim of this study was identify the socio-economic profile of the SRO industry and to illustrate the value of such information for an industry management assessment. The SRO industry has experienced a major decrease in production volume since the late 1970 and continues to be affected by prevailing diseases and increasing market competition from Australia’s Pacific oyster (Crassostrea gigas) industry. It is likely that socio-economic aspects have influenced this development within the SRO industry. The socio-economic profile was developed using data from a SRO industry farm survey which was undertaken in 2012. Findings suggested that this industry is characterised by a mature aged oyster farmer population and a part-time oyster farming approach. These characteristics may affect the farmers’ ability to drive innovation and growth. The results also suggested that there may be potential industry entry barriers present in the SRO industry which may prevent younger people taking up oyster farming. Given the results, the study concluded that the current socio-economic profile of the industry has likely contributed to the present economic status quo of the industry.
Resumo:
Background Pollens of subtropical grasses, Bahia (Paspalum notatum), Johnson (Sorghum halepense), and Bermuda (Cynodon dactylon), are common causes of respiratory allergies in subtropical regions worldwide. Objective To evaluate IgE cross-reactivity of grass pollen (GP) found in subtropical and temperate areas. Methods Case and control serum samples from 83 individuals from the subtropical region of Queensland were tested for IgE reactivity with GP extracts by enzyme-linked immunosorbent assay. A randomly sampled subset of 21 serum samples from patients with subtropical GP allergy were examined by ImmunoCAP and cross-inhibition assays. Results Fifty-four patients with allergic rhinitis and GP allergy had higher IgE reactivity with P notatum and C dactylon than with a mixture of 5 temperate GPs. For 90% of 21 GP allergic serum samples, P notatum, S halepense, or C dactylon specific IgE concentrations were higher than temperate GP specific IgE, and GP specific IgE had higher correlations of subtropical GP (r = 0.771-0.950) than temperate GP (r = 0.317-0.677). In most patients (71%-100%), IgE with P notatum, S halepense, or C dactylon GPs was inhibited better by subtropical GP than temperate GP. When the temperate GP mixture achieved 50% inhibition of IgE with subtropical GP, there was a 39- to 67-fold difference in concentrations giving 50% inhibition and significant differences in maximum inhibition for S halepense and P notatum GP relative to temperate GP. Conclusion Patients living in a subtropical region had species specific IgE recognition of subtropical GP. Most GP allergic patients in Queensland would benefit from allergen specific immunotherapy with a standardized content of subtropical GP allergens.
Resumo:
Grass pollens of the temperate (Pooideae) subfamily and subtropical subfamilies of grasses are major aeroallergen sources worldwide. The subtropical Chloridoideae (e.g. Cynodon dactylon; Bermuda grass) and Panicoideae (e.g. Paspalum notatum; Bahia grass) species are abundant in parts of Africa, India, Asia, Australia and the Americas, where a large and increasing proportion of the world's population abide. These grasses are phylogenetically and ecologically distinct from temperate grasses. With the advent of global warming, it is conceivable that the geographic distribution of subtropical grasses and the contribution of their pollen to the burden of allergic rhinitis and asthma will increase. This review aims to provide a comprehensive synthesis of the current global knowledge of (i) regional variation in allergic sensitivity to subtropical grass pollens, (ii) molecular allergenic components of subtropical grass pollens and (iii) allergic responses to subtropical grass pollen allergens in relevant populations. Patients from subtropical regions of the world show higher allergic sensitivity to grass pollens of Chloridoideae and Panicoideae grasses, than to temperate grass pollens. The group 1 allergens are amongst the allergen components of subtropical grass pollens, but the group 5 allergens, by which temperate grass pollen extracts are standardized for allergen content, appear to be absent from both subfamilies of subtropical grasses. Whilst there are shared allergenic components and antigenic determinants, there are additional clinically relevant subfamily-specific differences, at T- and B-cell levels, between pollen allergens of subtropical and temperate grasses. Differential immune recognition of subtropical grass pollens is likely to impact upon the efficacy of allergen immunotherapy of patients who are primarily sensitized to subtropical grass pollens. The literature reviewed herein highlights the clinical need to standardize allergen preparations for both types of subtropical grass pollens to achieve optimal diagnosis and treatment of patients with allergic respiratory disease in subtropical regions of the world. © 2014 John Wiley & Sons Ltd.