15 resultados para 795
em Queensland University of Technology - ePrints Archive
Resumo:
This paper is a continuation of the paper titled “Concurrent multi-scale modeling of civil infrastructure for analyses on structural deteriorating—Part I: Modeling methodology and strategy” with the emphasis on model updating and verification for the developed concurrent multi-scale model. The sensitivity-based parameter updating method was applied and some important issues such as selection of reference data and model parameters, and model updating procedures on the multi-scale model were investigated based on the sensitivity analysis of the selected model parameters. The experimental modal data as well as static response in terms of component nominal stresses and hot-spot stresses at the concerned locations were used for dynamic response- and static response-oriented model updating, respectively. The updated multi-scale model was further verified to act as the baseline model which is assumed to be finite-element model closest to the real situation of the structure available for the subsequent arbitrary numerical simulation. The comparison of dynamic and static responses between the calculated results by the final model and measured data indicated the updating and verification methods applied in this paper are reliable and accurate for the multi-scale model of frame-like structure. The general procedures of multi-scale model updating and verification were finally proposed for nonlinear physical-based modeling of large civil infrastructure, and it was applied to the model verification of a long-span bridge as an actual engineering practice of the proposed procedures.
Resumo:
This paper developed a model for rostering ambulance crew in order to maximise the coverage throughout a planning horizon and minimise the number of ambulance crew. Rostering Ambulance Services is a complex task, which considers a large number of conflicting rules related to various aspects such as limits on the number of consecutive work hours, the number of shifts worked by each ambulance staff and restrictions on the type of shifts assigned. The two-stage models are developed using nonlinear integer programming technique to determine the following sub-problems: the shift start times; the number of staff required to work for each shift; and a balanced schedule of ambulance staff. At the first stage, the first two sub-problems have been solved. At the second stage, the third sub-problem has been solved using the first stage outputs. Computational experiments with real data are conducted and the results of the models are presented.
Resumo:
Background: Reducing rates of healthcare acquired infection has been identified by the Australian Commission on Safety and Quality in Health Care as a national priority. One of the goals is the prevention of central venous catheter-related bloodstream infection (CR-BSI). At least 3,500 cases of CR-BSI occur annually in Australian hospitals, resulting in unnecessary deaths and costs to the healthcare system between $25.7 and $95.3 million. Two approaches to preventing these infections have been proposed: use of antimicrobial catheters (A-CVCs); or a catheter care and management ‘bundle’. Given finite healthcare budgets, decisions about the optimal infection control policy require consideration of the effectiveness and value for money of each approach. Objectives: The aim of this research is to use a rational economic framework to inform efficient infection control policy relating to the prevention of CR-BSI in the intensive care unit. It addresses three questions relating to decision-making in this area: 1. Is additional investment in activities aimed at preventing CR-BSI an efficient use of healthcare resources? 2. What is the optimal infection control strategy from amongst the two major approaches that have been proposed to prevent CR-BSI? 3. What uncertainty is there in this decision and can a research agenda to improve decision-making in this area be identified? Methods: A decision analytic model-based economic evaluation was undertaken to identify an efficient approach to preventing CR-BSI in Queensland Health intensive care units. A Markov model was developed in conjunction with a panel of clinical experts which described the epidemiology and prognosis of CR-BSI. The model was parameterised using data systematically identified from the published literature and extracted from routine databases. The quality of data used in the model and its validity to clinical experts and sensitivity to modelling assumptions was assessed. Two separate economic evaluations were conducted. The first evaluation compared all commercially available A-CVCs alongside uncoated catheters to identify which was cost-effective for routine use. The uncertainty in this decision was estimated along with the value of collecting further information to inform the decision. The second evaluation compared the use of A-CVCs to a catheter care bundle. We were unable to estimate the cost of the bundle because it is unclear what the full resource requirements are for its implementation, and what the value of these would be in an Australian context. As such we undertook a threshold analysis to identify the cost and effectiveness thresholds at which a hypothetical bundle would dominate the use of A-CVCs under various clinical scenarios. Results: In the first evaluation of A-CVCs, the findings from the baseline analysis, in which uncertainty is not considered, show that the use of any of the four A-CVCs will result in health gains accompanied by cost-savings. The MR catheters dominate the baseline analysis generating 1.64 QALYs and cost-savings of $130,289 per 1.000 catheters. With uncertainty, and based on current information, the MR catheters remain the optimal decision and return the highest average net monetary benefits ($948 per catheter) relative to all other catheter types. This conclusion was robust to all scenarios tested, however, the probability of error in this conclusion is high, 62% in the baseline scenario. Using a value of $40,000 per QALY, the expected value of perfect information associated with this decision is $7.3 million. An analysis of the expected value of perfect information for individual parameters suggests that it may be worthwhile for future research to focus on providing better estimates of the mortality attributable to CR-BSI and the effectiveness of both SPC and CH/SSD (int/ext) catheters. In the second evaluation of the catheter care bundle relative to A-CVCs, the results which do not consider uncertainty indicate that a bundle must achieve a relative risk of CR-BSI of at least 0.45 to be cost-effective relative to MR catheters. If the bundle can reduce rates of infection from 2.5% to effectively zero, it is cost-effective relative to MR catheters if national implementation costs are less than $2.6 million ($56,610 per ICU). If the bundle can achieve a relative risk of 0.34 (comparable to that reported in the literature) it is cost-effective, relative to MR catheters, if costs over an 18 month period are below $613,795 nationally ($13,343 per ICU). Once uncertainty in the decision is considered, the cost threshold for the bundle increases to $2.2 million. Therefore, if each of the 46 Level III ICUs could implement an 18 month catheter care bundle for less than $47,826 each, this approach would be cost effective relative to A-CVCs. However, the uncertainty is substantial and the probability of error in concluding that the bundle is the cost-effective approach at a cost of $2.2 million is 89%. Conclusions: This work highlights that infection control to prevent CR-BSI is an efficient use of healthcare resources in the Australian context. If there is no further investment in infection control, an opportunity cost is incurred, which is the potential for a more efficient healthcare system. Minocycline/rifampicin catheters are the optimal choice of antimicrobial catheter for routine use in Australian Level III ICUs, however, if a catheter care bundle implemented in Australia was as effective as those used in the large studies in the United States it would be preferred over the catheters if it was able to be implemented for less than $47,826 per Level III ICU. Uncertainty is very high in this decision and arises from multiple sources. There are likely greater costs to this uncertainty for A-CVCs, which may carry hidden costs, than there are for a catheter care bundle, which is more likely to provide indirect benefits to clinical practice and patient safety. Research into the mortality attributable to CR-BSI, the effectiveness of SPC and CH/SSD (int/ext) catheters and the cost and effectiveness of a catheter care bundle in Australia should be prioritised to reduce uncertainty in this decision. This thesis provides the economic evidence to inform one area of infection control, but there are many other infection control decisions for which information about the cost-effectiveness of competing interventions does not exist. This work highlights some of the challenges and benefits to generating and using economic evidence for infection control decision-making and provides support for commissioning more research into the cost-effectiveness of infection control.
Resumo:
Insight into the unique structure of layered double hydroxides has been obtained using a combination of X-ray diffraction and thermal analysis. Indium containing hydrotalcites of formula Mg4In2(CO3)(OH)12•4H2O (2:1 In-LDH) through to Mg8In2(CO3)(OH)18•4H2O (4:1 In-LDH) with variation in the Mg:In ratio have been successfully synthesised. The d(003) spacing varied from 7.83 Å for the 2:1 LDH to 8.15 Å for the 3:1 indium containing layered double hydroxide. Distinct mass loss steps attributed to dehydration, dehydroxylation and decarbonation are observed for the indium containing hydrotalcite. Dehydration occurs over the temperature range ambient to 205 °C. Dehydroxylation takes place in a series of steps over the 238 to 277 °C temperature range. Decarbonation occurs between 763 and 795 °C. The dehydroxylation and decarbonation steps depend upon the Mg:In ratio. The formation of indium containing hydrotalcites and their thermal activation provides a method for the synthesis of indium oxide based catalysts.
Resumo:
This paper describes the design and implementation of a unique undergraduate program in signal processing at the Queensland University of Technology (QUT). The criteria that influenced the choice of the subjects and the laboratories developed to support them are presented. A recently established Signal Processing Research Centre (SPRC) has played an important role in the development of the signal processing teaching program. The SPRC also provides training opportunities for postgraduate studies and research.
Resumo:
Calcium (Ca) is the main element of most pulp capping materials and plays an essential role in mineralization. Different pulp capping materials can release various concentrations of Ca ions leading to different clinical outcomes. The purpose of this study was to investigate the effects of various concentrations of Ca ions on the growth and osteogenic differentiation of human dental pulp cells (hDPCs). Different concentrations of Ca ions were added to growth culture medium and osteogenic inductive culture medium. A Cell Counting Kit-8 (CCK-8) was used to determine the proliferation of hDPCs in growth culture medium. Osteogenic differentiation and mineralization were measured by alkaline phosphatase (ALP) assay, Alizarin red S/von kossa staining, calcium content quantitative assay. The selected osteogenic differentiation markers were investigated by quantitative real-time polymerase chain reaction (qRT-PCR). Within the range of 1.8–16.2 mM, increased concentrations of Ca ions had no effect on cell proliferation, but led to changes in osteogenic differentiation. It was noted that enhanced mineralized matrix nodule formation was found in higher Ca ions concentrations; however, ALP activity and gene expression were reduced. qRT-PCR results showed a trend towards down-regulated mRNA expression of type I collagen (COL1A2) and Runx2 at elevated concentrations of Ca ions, whereas osteopontin (OPN) and osteocalcin (OCN) mRNA expression was significantly up-regulated. Ca ions content in the culture media can significantly influence the osteogenic properties of hDPCs, indicating the importance of optimizing Ca ions release from dental pulp capping materials in order to achieve desirable clinical outcomes.
Resumo:
Objective: To comprehensively measure the burden of hepatitis B, liver cirrhosis and liver cancer in Shandong province, using disability-adjusted life years (DALYs) to estimate the disease burden attribute to hepatitis B virus (HBV)infection. Methods: Based on the mortality data of hepatitis B, liver cirrhosis and liver cancer derived from the third National Sampling Retrospective Survey for Causes of Death during 2004 and 2005, the incidence data of hepatitis B and the prevalence and the disability weights of liver cancer gained from the Shandong Cancer Prevalence Sampling Survey in 2007, we calculated the years of life lost (YLLs), years lived with disability (YLDs) and DALYs of three diseases following the procedures developed for the global burden of disease (GBD) study to ensure the comparability. Results: The total burden for hepatitis B, liver cirrhosis and liver cancer were 211 616 (39 377 YLLs and 172 239 YLDs), 16 783 (13 497 YLLs and 3286 YLDs) and 247 795 (240 236 YLLs and 7559 YLDs) DALYs in 2005 respectively, and men were 2.19, 2.36 and 3.16 times as that for women, respectively in Shandong province. The burden for hepatitis B was mainly because of disability (81.39%). However, most burden on liver cirrhosis and liver cancer were due to premature death (80.42% and 96.95%). The burden of each patient related to hepatitis B, liver cirrhosis and liver cancer were 4.8, 13.73 and 11.11 respectively. Conclusion: Hepatitis B, liver cirrhosis and liver cancer caused considerable burden to the people living in Shandong province, indicating that the control of hepatitis B virus infection would bring huge potential benefits.
Resumo:
Background: Ingestion of whey or casein yields divergent patterns of aminoacidemia that influence whole-body and skeletal muscle myofibrillar protein synthesis (MPS) after exercise. Direct comparisons of the effects of contrasting absorption rates exhibited by these proteins are confounded by their differing amino acid contents. Objective: Our objective was to determine the effect of divergent aminoacidemia by manipulating ingestion patterns of whey protein alone on MPS and anabolic signaling after resistance exercise. Design: In separate trials, 8 healthy men consumed whey protein either as a single bolus (BOLUS; 25-g dose) or as repeated, small, "pulsed" drinks (PULSE; ten 2.5-g drinks every 20 min) to mimic a more slowly digested protein. MPS and phosphorylation of signaling proteins involved in protein synthesis were measured at rest and after resistance exercise. Results: BOLUS increased blood essential amino acid (EAA) concentrations above those of PULSE (162% compared with 53%, P < 0.001) 60 min after exercise, whereas PULSE resulted in a smaller but sustained increase in aminoacidemia that remained elevated above BOLUS amounts later (180-220 min after exercise, P < 0.05). Despite an identical net area under the EAA curve, MPS was elevated to a greater extent after BOLUS than after PULSE early (1-3 h: 95% compared with 42%) and later (3-5 h: 193% compared with 121%) (both P < 0.05). There were greater changes in the phosphorylation of the Akt-mammalian target of rapamycin pathway after BOLUS than after PULSE. Conclusions: Rapid aminoacidemia in the postexercise period enhances MPS and anabolic signaling to a greater extent than an identical amount of protein fed in small pulses that mimic a more slowly digested protein. A pronounced peak aminoacidemia after exercise enhances protein synthesis.
Resumo:
Background: Findings from the phase 3 FLEX study showed that the addition of cetuximab to cisplatin and vinorelbine significantly improved overall survival, compared with cisplatin and vinorelbine alone, in the first-line treatment of EGFR-expressing, advanced non-small-cell lung cancer (NSCLC). We investigated whether candidate biomarkers were predictive for the efficacy of chemotherapy plus cetuximab in this setting. Methods: Genomic DNA extracted from formalin-fixed paraffin-embedded (FFPE) tumour tissue of patients enrolled in the FLEX study was screened for KRAS codon 12 and 13 and EGFR kinase domain mutations with PCR-based assays. In FFPE tissue sections, EGFR copy number was assessed by dual-colour fluorescence in-situ hybridisation and PTEN expression by immunohistochemistry. Treatment outcome was investigated according to biomarker status in all available samples from patients in the intention-to-treat population. The primary endpoint in the FLEX study was overall survival. The FLEX study, which is ongoing but not recruiting participants, is registered with ClinicalTrials.gov, number NCT00148798. Findings: KRAS mutations were detected in 75 of 395 (19%) tumours and activating EGFR mutations in 64 of 436 (15%). EGFR copy number was scored as increased in 102 of 279 (37%) tumours and PTEN expression as negative in 107 of 303 (35%). Comparisons of treatment outcome between the two groups (chemotherapy plus cetuximab vs chemotherapy alone) according to biomarker status provided no indication that these biomarkers were of predictive value. Activating EGFR mutations were identified as indicators of good prognosis, with patients in both treatment groups whose tumours carried such mutations having improved survival compared with those whose tumours did not (chemotherapy plus cetuximab: median 17·5 months [95% CI 11·7-23·4] vs 8·5 months [7·1-10·8], hazard ratio [HR] 0·52 [0·32-0·84], p=0·0063; chemotherapy alone: 23·8 months [15·2-not reached] vs 10·0 months [8·7-11·0], HR 0·35 [0·21-0·59], p<0·0001). Expression of PTEN seemed to be a potential indicator of good prognosis, with patients whose tumours expressed PTEN having improved survival compared with those whose tumours did not, although this finding was not significant (chemotherapy plus cetuximab: median 11·4 months [8·6-13·6] vs 6·8 months [5·9-12·7], HR 0·80 [0·55-1·16], p=0·24; chemotherapy alone: 11·0 months [9·2-12·6] vs 9·3 months [7·6-11·9], HR 0·77 [0·54-1·10], p=0·16). Interpretation: The efficacy of chemotherapy plus cetuximab in the first-line treatment of advanced NSCLC seems to be independent of each of the biomarkers assessed. Funding: Merck KGaA. © 2011 Elsevier Ltd.
Resumo:
The cost of enzymes that hydrolyse lignocellulosic substrates to fermentable sugars needs to be reduced to make cellulosic ethanol a cost-competitive liquid transport fuel. Sugarcane is a perennial crop and the successful integration of cellulase transgenes into the sugarcane production system requires that transgene expression is stable in the ratoon. Herein, we compared the accumulation of recombinant fungal cellobiohydrolase I (CBH I), fungal cellobiohydrolase II (CBH II), and bacterial endoglucanase (EG) in the leaves of mature, initial transgenic sugarcane plants and their mature ratoon. Mature ratoon events containing equivalent or elevated levels of active CBH I, CBH II, and EG in the leaves were identified. Further, we have demonstrated that recombinant fungal CBH I and CBH II can resist proteolysis during sugarcane leaf senescence, while bacterial EG cannot. These results demonstrate the stability of cellulase enzyme transgene expression in transgenic sugarcane and the utility of sugarcane as a biofactory crop for production of cellulases.
Resumo:
Identifying appropriate decision criteria and making optimal decisions in a structured way is a complex process. This paper presents an approach for doing this in the form of a hybrid Quality Function Deployment (QFD) and Cybernetic Analytic Network Process (CANP) model for project manager selection. This involves the use of QFD to translate the owner's project management expectations into selection criteria and the CANP to weight the expectations and selection criteria. The supermatrix approach then prioritises the candidates with respect to the overall decision-making goal. A case study is used to demonstrate the use of the model in selecting a renovation project manager. This involves the development of 18 selection criteria in response to the owner's three main expectations of time, cost and quality.
Resumo:
Idiomarina sp. strain 28-8 is an aerobic, Gram-negative, flagellar bacterium isolated from the bodies of ark shells (Scapharca broughtonii) collected from underwater sediments in Gangjin Bay, South Korea. Here, we present the draft genome sequence of Idiomarina sp. 28-8 (2,971,606 bp, with a G+C content of 46.9%), containing 2,795 putative coding sequences.
Resumo:
Background Pollens of the Panicoideae subfamily of grasses including Bahia (Paspalum notatum) are important allergen sources in subtropical regions of the world. An assay for specific IgE to the major molecular allergenic component, Pas n 1, of Bahia grass pollen (BaGP) would have immunodiagnostic utility for patients with pollen allergy in these regions. Methods Biotinylated Pas n 1 purified from BaGP was coated onto streptavidin ImmunoCAPs. Subjects were assessed by clinical history of allergic rhinitis and skin prick test (SPT) to aeroallergens. Serum total, BaGP-specific and Pas n 1-specific IgE were measured. Results: Pas n 1 IgE concentrations were highly correlated with BaGP SPT (r = 0.795, p < 0.0001) and BaGP IgE (r = 0.915, p < 0.0001). At 0.23 kU/l Pas n 1 IgE, the diagnostic sensitivity (92.4%) and specificity (93.1%) for the detection of BaGP allergy was high (area under receiver operator curve 0.960, p < 0.0001). The median concentrations of Pas n 1 IgE in non-Atopic subjects (0.01 kU/l, n = 67) and those with other allergies (0.02 kU/l, n = 59) showed no inter-group difference, whilst grass pollen-Allergic patients with allergic rhinitis showed elevated Pas n 1 IgE (6.71 kU/l, n = 182, p < 0.0001). The inter-Assay coefficient of variation for the BaGP-Allergic serum pool was 6.92%. Conclusions Pas n 1 IgE appears to account for most of the BaGP-specific IgE. This molecular component immunoassay for Pas n 1 IgE has potential utility to improve the sensitivity and accuracy of diagnosis of BaGP allergy for patients in subtropical regions.