422 resultados para 660000 - Energy Supply

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy usage in general, and electricity usage in particular, are major concerns internationally due to the increased cost of providing energy supplies and the environmental impacts of electricity generation using carbon-based fuels. If a "systems" approach is taken to understanding energy issues then both supply and demand need to be considered holistically. This paper examines two research projects in the energy area with IT tools as key deliverables, one examining supply issues and the other studying demand side issues. The supply side project used hard engineering methods to build the models and software, while the demand side project used a social science approach. While the projects are distinct, there was an overlap in personnel. Comparing the knowledge extraction, model building, implementation and interface issues of these two deliverables identifies both interesting contrasts and commonalities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Zero energy buildings (ZEB) and zero energy homes (ZEH) are a current hot topic globally for policy makers (what are the benefits and costs), designers (how do we design them), the construction industry (can we build them), marketing (will consumers buy them) and researchers (do they work and what are the implications). This paper presents initial findings from actual measured data from a 9 star (as built), off-ground detached family home constructed in south-east Queensland in 2008. The integrated systems approach to the design of the house is analysed in each of its three main goals: maximising the thermal performance of the building envelope, minimising energy demand whilst maintaining energy service levels, and implementing a multi-pronged low carbon approach to energy supply. The performance outcomes of each of these stages are evaluated against definitions of Net Zero Carbon / Net Zero Emissions (Site and Source) and Net Zero Energy (onsite generation v primary energy imports). The paper will conclude with a summary of the multiple benefits of combining very high efficiency building envelopes with diverse energy management strategies: a robustness, resilience, affordability and autonomy not generally seen in housing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Zero energy buildings (ZEB) and zero energy homes (ZEH) are a current hot topic globally for policy makers (what are the benefits and costs), designers (how do we design them), the construction industry (can we build them), marketing (will consumers buy them) and researchers (do they work and what are the implications). This paper presents initial findings from actual measured data from a 9 star (as built), off-ground detached family home constructed in south-east Queensland in 2008. The integrated systems approach to the design of the house is analysed in each of its three main goals: maximising the thermal performance of the building envelope, minimising energy demand whilst maintaining energy service levels, and implementing a multi-pronged low carbon approach to energy supply. The performance outcomes of each of these stages are evaluated against definitions of Net Zero Carbon / Net Zero Emissions (Site and Source) and Net Zero Energy (onsite generation vs primary energy imports). The paper will conclude with a summary of the multiple benefits of combining very high efficiency building envelopes with diverse energy management strategies: a robustness, resilience, affordability and autonomy not generally seen in housing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Knowledge of the regulation of food intake is crucial to an understanding of body weight and obesity. Strictly speaking, we should refer to the control of food intake whose expression is modulated in the interests of the regulation of body weight. Food intake is controlled, body weight is regulated. However, this semantic distinction only serves to emphasize the importance of food intake. Traditionally food intake has been researched within the homeostatic approach to physiological systems pioneered by Claude Bernard, Walter Cannon and others; and because feeding is a form of behaviour, it forms part of what Curt Richter referred to as the behavioural regulation of body weight (or behavioural homeostasis). This approach views food intake as the vehicle for energy supply whose expression is modulated by a metabolic drive generated in response to a requirement for energy. The idea was that eating behaviour is stimulated and inhibited by internal signalling systems (for the drive and suppression of eating respectively) in order to regulate the internal environment (energy stores, tissue needs).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is a growing demand for sustainable retirement villages in Australia due to an increasing number of ageing population and public acceptance of sustainable development. This research aims to gain a better understanding of retirees’ understanding about sustainable retirement living and their attitudes towards sustainable developments via a questionnaire survey approach. The results showed that the current and potential residents of retirement villages are generally very conscious of unsustainable resource consumption and would like their residences and community to be more environmentally friendly and energy efficient. The cost of energy supply is a concern to majority of respondents. Education is required to residents about recycling household waste and how to use available facilities. A better understanding of retirees’ awareness and attitudes towards sustainability issues helps to improve the sustainable developments of retirement villages in the future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is a growing demand for sustainable retirement villages in Australia due to an increasing number of ageing population and public acceptance of sustainable development. This research aims to gain a better understanding of retirees’ understanding about sustainable retirement living and their attitudes towards sustainable developments via a questionnaire survey approach. The results showed that the current and potential residents of retirement villages are generally very conscious of unsustainable resource consumption and would like their residences and community to be more environmentally friendly and energy efficient. The cost of energy supply is a concern to majority of respondents. Education is required to residents about recycling household waste and how to use available facilities. A better understanding of retirees’ awareness and attitudes towards sustainability issues helps to improve the sustainable developments of retirement villages in the future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Combating unhealthy weight gain is a major public health and clinical management issue. The extent of research into the etiology and pathophysiology of obesity has produced a wealth of evidence regarding the contributing factors. While aspects of the environment are ‘obesogenic’, weight gain is not inevitable for every individual. What then explains potentially unhealthy weight gain in individuals living within an environment where others remain lean? In this paper we explore the biological compensation that acts in response to a reduced energy intake by reducing energy needs, in order to defend against weight loss. We then examine the evidence that there is only a weak biological compensation to surplus energy supply, and that this allows behavior to drive weight gain. The extent to which biology impacts behavior is also considered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electrocatalytic reduction of water to molecular hydrogen via the hydrogen evolution reaction may provide a sustainable energy supply for the future, but its commercial application is hampered by the use of precious platinum catalysts. All alternatives to platinum thus far are based on nonprecious metals, and, to our knowledge, there is no report about a catalyst for electrocatalytic hydrogen evolution beyond metals. Here we couple graphitic-carbon nitride with nitrogen-doped graphene to produce a metal-free hybrid catalyst, which shows an unexpected hydrogen evolution reaction activity with comparable overpotential and Tafel slope to some of well-developed metallic catalysts. Experimental observations in combination with density functional theory calculations reveal that its unusual electrocatalytic properties originate from an intrinsic chemical and electronic coupling that synergistically promotes the proton adsorption and reduction kinetics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Level crossing risk continues to be a significant safety concern for the security of rail operations around the world. Over the last decade or so, a third of railway related fatalities occurred as a direct result of collisions between road and rail vehicles in Australia. Importantly, nearly half of these collisions occurred at railway level crossings with no active protection, such as flashing lights or boom barriers. Current practice is to upgrade level crossings that have no active protection. However, the total number of level crossings found across Australia exceed 23,500, and targeting the proportion of these that are considered high risk (e.g. public crossings with passive controls) would cost in excess of AU$3.25 billion based on equipment, installation and commissioning costs of warning devices that are currently type approved. Level crossing warning devices that are low-cost provide a potentially effective control for reducing risk; however, over the last decade, there have been significant barriers and legal issues in both Australia and the US that have foreshadowed their adoption. These devices are designed to have significantly lower lifecycle costs compared with traditional warning devices. They often make use of use of alternative technologies for train detection, wireless connectivity and solar energy supply. This paper describes the barriers that have been encountered for the adoption of these devices in Australia, including the challenges associated with: (1) determining requisite safety levels for such devices; (2) legal issues relating to duty of care obligations of railway operators; and (3) issues of Tort liability around the use of less than fail-safe equipment. This paper provides an overview of a comprehensive safety justification that was developed as part of a project funded by a collaborative rail research initiative established by the Australian government, and describes the conceptual framework and processes being used to justify its adoption. The paper provides a summary of key points from peer review and discusses prospective barriers that may need to be overcome for future adoption. A successful outcome from this process would result in the development of a guideline for decision-making, providing a precedence for adopting low-cost level crossing warning devices in other parts of the world. The framework described in this paper also provides relevance to the review and adoption of analogous technologies in rail and other safety critical industries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents data on residents’ use of common stairways and lifts (vertical circulation spaces) in multi-storey apartment buildings (MSABs) in Brisbane, Australia. Vertical movement is a defining aspect of multi-storey living and the energy consumed by lifts contributes significantly to the energy budget of the typical MSAB. The purpose is to investigate whether a reappraisal of vertical circulation design, through the lens of residents’ requirements, might contribute to energy reductions in this building type. Data was gathered on a theoretical sample of MSAB ranging from five decades old to very recent schemes. 90 residents were surveyed about their day-to-day experiences of circulation and access systems. The results showed that residents mainly chose to use the stairs for convenience and exercise. Building management regimes that limited residents’ access to collective spaces were the main impediment to discretionary stair use. Only two buildings did not have fully enclosed stairwells and these had the highest stair usage, suggesting that stair design, and building governance are two areas that might be worthy of attention. The more that circulation design is focussed on limiting access, the less opportunities there are for personal choice, incidental social interaction and casual surveillance of collective spaces. The more that design of vertical circulation spaces in MSAB meets residents’ needs the less likely they are to be reliant on continuous energy supply for normal functioning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reducing carbon dioxide (CO2) to hydrocarbon fuel with solar energy is significant for high-density solar energy storage and carbon balance. In this work, single palladium/platinum (Pd/Pt) atoms supported on graphitic carbon nitride (g-C3N4), i.e. Pd/g-C3N4 and Pt/g-C3N4, acting as photocatalysts for CO2 reduction were investigated by density function theory (DFT) calcu-lations for the first time. During CO2 reduction, the individual metal atoms function as the active sites, while g-C3N4 provides the source of hydrogen (H*) from hydrogen evolution reaction. The complete, as-designed photocatalysts exhibit excellent activity in CO2 reduction. HCOOH is the preferred product of CO2 reduction on the Pd/g-C3N4 catalyst with a rate-determining barrier of 0.66 eV, while the Pt/g-C3N4 catalyst prefers to reduce CO2 to CH4 with a rate-determining barrier of 1.16 eV. In addition, depositing atom catalysts on g-C3N4 significantly enhances the visible light absorption, rendering them ideal for visible light reduction of CO2. Our findings open a new avenue of CO2 reduction for renewable energy supply.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Welding system has now been concentrated on the development of new process to achieve cost savings, higher productivity and better quality in manufacturing industry. Discrete alternate supply of shielding gas is a new technology that alternately supplies the different kinds of shielding gases in weld zone. As the newdevelopedmethods compared to the previous generalwelding with a mixing supply of shielding gas, it cannot only increase thewelding quality, but also reduce the energy by 20% and the emission rate of fume. As a result, under thesamewelding conditions,comparedwith thewelding by supplying pure argon, argon + 67% helium mixture by conventional method and thewelding by supplying alternately pure argon and pure helium by alternate method showed the increased welding speed. Also, the alternate method showed the same welding speed with argon + 67% helium mixture without largely deteriorating of weld penetration. The alternate method with argon and helium compared with the conventional methods of pure argon and argon + 67% helium mixture produced the lowest degree of welding distortion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a high voltage pulsed power system based on low voltage switch-capacitor units connected to a current source for several applications such as plasma systems. A buck-boost converter topology is used to utilize the current source and a series of low voltage switch-capacitor units is connected to the current source in order to provide high voltage with high voltage stress (dv/dt) as demanded by loads. This pulsed power converter is flexible in terms of energy control, in that the stored energy in the current source can be adjusted by changing the current magnitude to significantly improve the efficiency of various systems with different requirements. Output voltage magnitude and stress (dv/dt) can be controlled by a proper selection of components and control algorithm to turn on and off switching devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the general evolution and broadening of the scope of the concept of infrastructure in many other sectors, the energy sector has maintained the same narrow boundaries for over 80 years. Energy infrastructure is still generally restricted in meaning to the transmission and distribution networks of electricity and, to some extent, gas. This is especially true in the urban development context. This early 20th century system is struggling to meet community expectations that the industry itself created and fostered for many decades. The relentless growth in demand and changing political, economic and environmental challenges require a shift from the traditional ‘predict and provide’ approach to infrastructure which is no longer economically or environmentally viable. Market deregulation and a raft of demand and supply side management strategies have failed to curb society’s addiction to the commodity of electricity. None of these responses has addressed the fundamental problem. This chapter presents an argument for the need for a new paradigm. Going beyond peripheral energy efficiency measures and the substitution of fossil fuels with renewables, it outlines a new approach to the provision of energy services in the context of 21st century urban environments.