676 resultados para 507.2

em Queensland University of Technology - ePrints Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mineral lewisite, (Ca,Fe,Na)2(Sb,Ti)2O6(O,OH)7 an antimony bearing mineral has been studied by Raman spectroscopy. A comparison is made with the Raman spectra of other minerals including bindheimite, stibiconite and roméite. The mineral lewisite is characterised by an intense sharp band at 517 cm-1 with a shoulder at 507 cm-1 assigned to SbO stretching modes. Raman bands of medium intensity for lewisite are observed at 300, 356 and 400 cm-1. These bands are attributed to OSbO bending vibrations. Raman bands in the OH stretching region are observed at 3200, 3328, 3471 cm-1 with a distinct shoulder at 3542 cm-1. The latter is assigned to the stretching vibration of OH units. The first three bands are attributed to water stretching vibrations. The observation of bands in the 3200 to 3500 cm-1 region suggests that water is involved in the lewisite structure. If this is the case then the formula may be better written as Ca, Fe2+, Na)2(Sb, Ti)2(O,OH)7 •xH2O.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plumbogummite PbAl3(PO4)2(OH,H2O)6 is a mineral of environmental significance and is a member of the alunite-jarosite supergroup. The molecular structure of the mineral has been investigated by Raman spectroscopy. The spectra of different plumbogummite specimens differ although there are many common features. The Raman spectra prove the spectral profile consisting of overlapping bands and shoulders. Raman bands and shoulders observed at 971, 980, 1002 and 1023 cm−1 (China sample) and 913, 981, 996 and 1026 cm−1 (Czech sample) are assigned to the ν1 symmetric stretching modes of the (PO4)3−, at 1002 and 1023 cm−1 (China) and 996 and 1026 cm−1 to the ν1 symmetric stretching vibrations of the (O3POH)2− units, and those at 1057, 1106 and 1182 (China) and at 1102, 1104 and 1179 cm−1 (Czech) to the ν3 (PO4)3− and ν3 (PO3) antisymmetric stretching vibrations. Raman bands and shoulders at 634, 613 and 579 cm−1 (China) and 611 and 596 cm−1 (Czech) are attributed to the ν4 (δ) (PO4)3− bending vibrations and those at 507, 494 and 464 cm−1 (China) and 505 and 464 cm−1 (Czech) to the ν2 (δ) (PO4)3− bending vibrations. The Raman spectrum of the OH stretching region is complex. Raman bands and shoulders are identified at 2824, 3121, 3249, 3372, 3479 and 3602 cm−1 for plumbogummite from China, and at 3077, 3227, 3362, 3480, 3518 and 3601 cm−1 for the Czech Republic sample. These bands are assigned to the ν OH stretching modes of water molecules and hydrogen ions. Approximate O–H⋯O hydrogen bond lengths inferred from the Raman spectra vary in the range >3.2–2.62 Å (China) and >3.2–2.67 Å (Czech). The minority presence of some carbonate ions in the plumbogummite (China sample) is connected with distinctive intensity increasing of the Raman band at 1106 cm−1, in which may participate the ν1 (CO3)2− symmetric stretching vibration overlapped with phosphate stretching vibrations.