33 resultados para 4D-CBCT

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three thousand liters of water were infiltrated from a 4 m diameter pond to track flow and transport inside fractured carbonates with 20-40 % porosity. Sixteen time-lapse 3D Ground Penetrating Radar (GPR) surveys with repetition intervals between 2 hrs and 5 days monitored the spreading of the water bulb in the subsurface. Based on local travel time shifts between repeated GPR survey pairs, localized changes of volumetric water content can be related to the processes of wetting, saturation and drainage. Deformation bands consisting of thin sub vertical sheets of crushed grains reduce the magnitude of water content changes but enhance flow in sheet parallel direction. This causes an earlier break through across a stratigraphic boundary compared to porous limestone without deformation bands. This experiment shows how time-lapse 3D GPR or 4D GPR can non-invasively track ongoing flow processes in rock-volumes of over 100 m3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the development of a model of cerebral atrophic changes associated with the progression of Alzheimer's disease (AD). Linear registration, region-of-interest analysis, and voxel-based morphometry methods have all been employed to elucidate the changes observed at discrete intervals during a disease process. In addition to describing the nature of the changes, modeling disease-related changes via deformations can also provide information on temporal characteristics. In order to continuously model changes associated with AD, deformation maps from 21 patients were averaged across a novel z-score disease progression dimension based on Mini Mental State Examination (MMSE) scores. The resulting deformation maps are presented via three metrics: local volume loss (atrophy), volume (CSF) increase, and translation (interpreted as representing collapse of cortical structures). Inspection of the maps revealed significant perturbations in the deformation fields corresponding to the entorhinal cortex (EC) and hippocampus, orbitofrontal and parietal cortex, and regions surrounding the sulci and ventricular spaces, with earlier changes predominantly lateralized to the left hemisphere. These changes are consistent with results from post-mortem studies of AD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Traditional construction planning relies upon the critical path method (CPM) and bar charts. Both of these methods suffer from visualization and timing issues that could be addressed by 4D technology specifically geared to meet the needs of the construction industry. This paper proposed a new construction planning approach based on simulation by using a game engine. Design/methodology/approach A 4D automatic simulation tool was developed and a case study was carried out. The proposed tool was used to simulate and optimize the plans for the installation of a temporary platform for piling in a civil construction project in Hong Kong. The tool simulated the result of the construction process with three variables: 1) equipment, 2) site layout and 3) schedule. Through this, the construction team was able to repeatedly simulate a range of options. Findings The results indicate that the proposed approach can provide a user-friendly 4D simulation platform for the construction industry. The simulation can also identify the solution being sought by the construction team. The paper also identifies directions for further development of the 4D technology as an aid in construction planning and decision-making. Research limitations/implications The tests on the tool are limited to a single case study and further research is needed to test the use of game engines for construction planning in different construction projects to verify its effectiveness. Future research could also explore the use of alternative game engines and compare their performance and results. Originality/value The authors proposed the use of game engine to simulate the construction process based on resources, working space and construction schedule. The developed tool can be used by end-users without simulation experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: It is common for head and neck patients to be affected by time trend errors as a result of weight loss during a course of radiation treatment. The objective of this planning study was to investigate the impact of weight loss on Volumetric Modulated Arc Therapy (VMAT) as well as Intensity modulated radiation therapy (IMRT) for locally advanced head and neck cancer using automatic co-registration of the CBCT. Methods and Materials: A retrospective analysis of previously treated IMRT plans for 10 patients with locally advanced head and neck cancer patients was done. A VMAT plan was also produced for all patients. We calculated the dose–volume histograms (DVH) indices for spinal cord planning at risk volumes (PRVs), the brainstem PRVs (SC+0.5cm and BS+0.5cm, respectively) as well as mean dose to the parotid glands. Results: The results show that the mean difference in dose to the SC+0.5cm was 1.03% and 1.27% for the IMRT and VMAT plans, respectively. As for dose to the BS+0.5, the percentage difference was 0.63% for the IMRT plans and 0.61% for the VMAT plans. The analysis of the parotid gland doses shows that the percentage change in mean dose to left parotid was -8.0% whereas that of the right parotid was -6.4% for the IMRT treatment plans. In the VMAT plans, the percentages change for the left and the right parotid glands were -6.6% and -6.7% respectively. Conclusions: This study shows a clinically significant impact of weight loss on DVH indices analysed in head and neck organs at risk. It highlights the importance of adaptive radiotherapy in head and neck patients if organ at risk sparing is to be maintained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose This study evaluated the impact of a daily and weekly image-guided radiotherapy protocols in reducing setup errors and setting of appropriate margins in head and neck cancer patients. Materials and methods Interfraction and systematic shifts for the hypothetical day 1–3 plus weekly imaging were extrapolated from daily imaging data from 31 patients (964 cone beam computed tomography (CBCT) scans). In addition, residual setup errors were calculated by taking the average shifts in each direction for each patient based on the first three shifts and were presumed to represent systematic setup error. The clinical target volume (CTV) to planning target volume (PTV) margins were calculated using van Herk formula and analysed for each protocol. Results The mean interfraction shifts for daily imaging were 0·8, 0·3 and 0·5 mm in the S-I (superior-inferior), L-R (left-right) and A-P (anterior-posterior) direction, respectively. On the other hand the mean shifts for day 1–3 plus weekly imaging were 0·9, 1·8 and 0·5 mm in the S-I, L-R and A-P direction, respectively. The mean day 1–3 residual shifts were 1·5, 2·1 and 0·7 mm in the S-I, L-R and A-P direction, respectively. No significant difference was found in the mean setup error for the daily and hypothetical day 1–3 plus weekly protocol. However, the calculated CTV to PTV margins for the daily interfraction imaging data were 1·6, 3·8 and 1·4 mm in the S-I, L-R and A-P directions, respectively. Hypothetical day 1–3 plus weekly resulted in CTV–PTV margins of 5, 4·2 and 5 mm in the S-I, L-R and A-P direction. Conclusions The results of this study show that a daily CBCT protocol reduces setup errors and allows setup margin reduction in head and neck radiotherapy compared to a weekly imaging protocol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ratio of the lengths of an individual's second to fourth digit (2D:4D) is commonly used as a noninvasive retrospective biomarker for prenatal androgen exposure. In order to identify the genetic determinants of 2D:4D, we applied a genome-wide association approach to 1507 11-year-old children from the Avon Longitudinal Study of Parents and Children (ALSPAC) in whom 2D:4D ratio had been measured, as well as a sample of 1382 12- to 16-year-olds from the Brisbane Adolescent Twin Study. A meta-analysis of the two scans identified a single variant in the LIN28B gene that was strongly associated with 2D:4D (rs314277: p = 4.1 x 10(-8)) and was subsequently independently replicated in an additional 3659 children from the ALSPAC cohort (p = 1.53 x 10(-6)). The minor allele of the rs314277 variant has previously been linked to increased height and delayed age at menarche, but in our study it was associated with increased 2D:4D in the direction opposite to that of previous reports on the correlation between 2D:4D and age at menarche. Our findings call into question the validity of 2D:4D as a simplistic retrospective biomarker for prenatal testosterone exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Automated Scheduler is a prototype software tool that automatically prepares a construction schedule together with a 4D simulation of the construction process from a 3D CAD building model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tungsten trioxide is one of the potential semiconducting materials used for sensing NH3, CO, CH4 and acetaldehyde gases. The current research aims at development, microstructural characterization and gas sensing properties of thin films of Tungsten trioxide (WO3). In this paper, we intend to present the microstructural characterization of these films as a function of post annealing heat treatment. Microstructural and elemental analysis of electron beam evaporated WO3 thin films and iron doped WO3 films (WO3:Fe) have been carried out using analytical techniques such as Transmission electron microscopy, Rutherford Backscattered Spectroscopy and XPS analysis. TEM analysis revealed that annealing at 300oC for 1 hour improves cyrstallinity of WO3 film. Both WO3 and WO3:Fe films had uniform thickness and the values corresponded to those measured during deposition. RBS results show a fairly high concentration of oxygen at the film surface as well as in the bulk for both films, which might be due to adsorption of oxygen from atmosphere or lattice oxygen vacancy inherent in WO3 structure. XPS results indicate that tungsten exists in 4d electronic state on the surface but at a depth of 10 nm, both 4d and 4f electronic states were observed. Atomic force microscopy reveals nanosize particles and porous structure of the film. This study shows e-beam evaporation technique produces nanoaparticles and porous WO3 films suitable for gas sensing applications and doping with iron decreases the porosity and particle size which can help improve the gas selectivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unmanned Aerial Vehicles (UAVs) are emerging as an ideal platform for a wide range of civil applications such as disaster monitoring, atmospheric observation and outback delivery. However, the operation of UAVs is currently restricted to specially segregated regions of airspace outside of the National Airspace System (NAS). Mission Flight Planning (MFP) is an integral part of UAV operation that addresses some of the requirements (such as safety and the rules of the air) of integrating UAVs in the NAS. Automated MFP is a key enabler for a number of UAV operating scenarios as it aids in increasing the level of onboard autonomy. For example, onboard MFP is required to ensure continued conformance with the NAS integration requirements when there is an outage in the communications link. MFP is a motion planning task concerned with finding a path between a designated start waypoint and goal waypoint. This path is described with a sequence of 4 Dimensional (4D) waypoints (three spatial and one time dimension) or equivalently with a sequence of trajectory segments (or tracks). It is necessary to consider the time dimension as the UAV operates in a dynamic environment. Existing methods for generic motion planning, UAV motion planning and general vehicle motion planning cannot adequately address the requirements of MFP. The flight plan needs to optimise for multiple decision objectives including mission safety objectives, the rules of the air and mission efficiency objectives. Online (in-flight) replanning capability is needed as the UAV operates in a large, dynamic and uncertain outdoor environment. This thesis derives a multi-objective 4D search algorithm entitled Multi- Step A* (MSA*) based on the seminal A* search algorithm. MSA* is proven to find the optimal (least cost) path given a variable successor operator (which enables arbitrary track angle and track velocity resolution). Furthermore, it is shown to be of comparable complexity to multi-objective, vector neighbourhood based A* (Vector A*, an extension of A*). A variable successor operator enables the imposition of a multi-resolution lattice structure on the search space (which results in fewer search nodes). Unlike cell decomposition based methods, soundness is guaranteed with multi-resolution MSA*. MSA* is demonstrated through Monte Carlo simulations to be computationally efficient. It is shown that multi-resolution, lattice based MSA* finds paths of equivalent cost (less than 0.5% difference) to Vector A* (the benchmark) in a third of the computation time (on average). This is the first contribution of the research. The second contribution is the discovery of the additive consistency property for planning with multiple decision objectives. Additive consistency ensures that the planner is not biased (which results in a suboptimal path) by ensuring that the cost of traversing a track using one step equals that of traversing the same track using multiple steps. MSA* mitigates uncertainty through online replanning, Multi-Criteria Decision Making (MCDM) and tolerance. Each trajectory segment is modeled with a cell sequence that completely encloses the trajectory segment. The tolerance, measured as the minimum distance between the track and cell boundaries, is the third major contribution. Even though MSA* is demonstrated for UAV MFP, it is extensible to other 4D vehicle motion planning applications. Finally, the research proposes a self-scheduling replanning architecture for MFP. This architecture replicates the decision strategies of human experts to meet the time constraints of online replanning. Based on a feedback loop, the proposed architecture switches between fast, near-optimal planning and optimal planning to minimise the need for hold manoeuvres. The derived MFP framework is original and shown, through extensive verification and validation, to satisfy the requirements of UAV MFP. As MFP is an enabling factor for operation of UAVs in the NAS, the presented work is both original and significant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: To develop clinical protocols for acquiring PET images, performing CT-PET registration and tumour volume definition based on the PET image data, for radiotherapy for lung cancer patients and then to test these protocols with respect to levels of accuracy and reproducibility. Method: A phantom-based quality assurance study of the processes associated with using registered CT and PET scans for tumour volume definition was conducted to: (1) investigate image acquisition and manipulation techniques for registering and contouring CT and PET images in a radiotherapy treatment planning system, and (2) determine technology-based errors in the registration and contouring processes. The outcomes of the phantom image based quality assurance study were used to determine clinical protocols. Protocols were developed for (1) acquiring patient PET image data for incorporation into the 3DCRT process, particularly for ensuring that the patient is positioned in their treatment position; (2) CT-PET image registration techniques and (3) GTV definition using the PET image data. The developed clinical protocols were tested using retrospective clinical trials to assess levels of inter-user variability which may be attributed to the use of these protocols. A Siemens Somatom Open Sensation 20 slice CT scanner and a Philips Allegro stand-alone PET scanner were used to acquire the images for this research. The Philips Pinnacle3 treatment planning system was used to perform the image registration and contouring of the CT and PET images. Results: Both the attenuation-corrected and transmission images obtained from standard whole-body PET staging clinical scanning protocols were acquired and imported into the treatment planning system for the phantom-based quality assurance study. Protocols for manipulating the PET images in the treatment planning system, particularly for quantifying uptake in volumes of interest and window levels for accurate geometric visualisation were determined. The automatic registration algorithms were found to have sub-voxel levels of accuracy, with transmission scan-based CT-PET registration more accurate than emission scan-based registration of the phantom images. Respiration induced image artifacts were not found to influence registration accuracy while inadequate pre-registration over-lap of the CT and PET images was found to result in large registration errors. A threshold value based on a percentage of the maximum uptake within a volume of interest was found to accurately contour the different features of the phantom despite the lower spatial resolution of the PET images. Appropriate selection of the threshold value is dependant on target-to-background ratios and the presence of respiratory motion. The results from the phantom-based study were used to design, implement and test clinical CT-PET fusion protocols. The patient PET image acquisition protocols enabled patients to be successfully identified and positioned in their radiotherapy treatment position during the acquisition of their whole-body PET staging scan. While automatic registration techniques were found to reduce inter-user variation compared to manual techniques, there was no significant difference in the registration outcomes for transmission or emission scan-based registration of the patient images, using the protocol. Tumour volumes contoured on registered patient CT-PET images using the tested threshold values and viewing windows determined from the phantom study, demonstrated less inter-user variation for the primary tumour volume contours than those contoured using only the patient’s planning CT scans. Conclusions: The developed clinical protocols allow a patient’s whole-body PET staging scan to be incorporated, manipulated and quantified in the treatment planning process to improve the accuracy of gross tumour volume localisation in 3D conformal radiotherapy for lung cancer. Image registration protocols which factor in potential software-based errors combined with adequate user training are recommended to increase the accuracy and reproducibility of registration outcomes. A semi-automated adaptive threshold contouring technique incorporating a PET windowing protocol, accurately defines the geometric edge of a tumour volume using PET image data from a stand alone PET scanner, including 4D target volumes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents Multi-Step A* (MSA*), a search algorithm based on A* for multi-objective 4D vehicle motion planning (three spatial and one time dimension). The research is principally motivated by the need for offline and online motion planning for autonomous Unmanned Aerial Vehicles (UAVs). For UAVs operating in large, dynamic and uncertain 4D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles and the rules of the air. It is shown that MSA* finds a cost optimal solution using variable length, angle and velocity trajectory segments. These segments are approximated with a grid based cell sequence that provides an inherent tolerance to uncertainty. Computational efficiency is achieved by using variable successor operators to create a multi-resolution, memory efficient lattice sampling structure. Simulation studies on the UAV flight planning problem show that MSA* meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of vector neighbourhood based A*.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Techniques for the accurate measurement of ionising radiation have been evolving since Roentgen first discovered x-rays in 1895; until now experimental measurements of radiation fields in the three spatial dimensions plus time have not been successfully demonstrated. In this work, we embed an organic plastic scintillator in a polymer gel dosimeter to obtain the first quasi-4D experimental measurement of a radiation field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this feasibility study an organic plastic scintillator is calibrated against ionisation chamber measurements and then embedded in a polymer gel dosimeter to obtain a quasi-4D experimental measurement of a radiation field. This hybrid dosimeter was irradiated with a linear accelerator, with temporal measurements of the dose rate being acquired by the scintillator and spatial measurements acquired with the gel dosimeter. The detectors employed in this work are radiologically equivalent; and we show that neither detector perturbs the intensity of the radiation field of the other. By employing these detectors in concert, spatial and temporal variations in the radiation intensity can now be detected and gel dosimeters can be calibrated for absolute dose from a single irradiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traders in the financial world are assessed by the amount of money they make and, increasingly, by the amount of money they make per unit of risk taken, a measure known as the Sharpe Ratio. Little is known about the average Sharpe Ratio among traders, but the Efficient Market Hypothesis suggests that traders, like asset managers, should not outperform the broad market. Here we report the findings of a study conducted in the City of London which shows that a population of experienced traders attain Sharpe Ratios significantly higher than the broad market. To explain this anomaly we examine a surrogate marker of prenatal androgen exposure, the second-to-fourth finger length ratio (2D:4D), which has previously been identified as predicting a trader's long term profitability. We find that it predicts the amount of risk taken by traders but not their Sharpe Ratios. We do, however, find that the traders' Sharpe Ratios increase markedly with the number of years they have traded, a result suggesting that learning plays a role in increasing the returns of traders. Our findings present anomalous data for the Efficient Markets Hypothesis.