2 resultados para 3a4

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human cytochrome P450 (P450) enzymes are involved in the oxidation of natural products found in foods, beverages, and tobacco products and their catalytic activities can also be modulated by components of the materials. The microsomal activation of aflatoxin B1 to the exo-3,9-epoxide is stimulated by flavone and 7,8-benzoflavone, and attenuated by the flavonoid naringenin, a major component of grapefruit. P4502E1 has been demonstrated to play a potentially major role in the activation of a number of very low-molecular weight cancer suspects, including ethyl carbamate (urethan), which is present in alcoholic beverages and particularly stone brandies. The enzyme (P4502E1) is also known to be inducible by ethanol. Tobacco contains a large number of potential carcinogens. In human liver microsomes a significant role for P4501A2 can be demonstrated in the activation of cigarette smoke condensate. Some of the genotoxicity may be due to arylamines. P4501A2 is also inhibited by components of crude cigarette smoke condensate. The tobacco-specific nitrosamines are activated by a number of P450 enzymes. Of those known to be present in human liver, P4501A2, 2A6, and 2E1 can activate these nitrosamines to genotoxic products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anticonvulsant phenytoin (5,5-diphenylhydantoin) provokes a skin rash in 5 to 10% of patients, which heralds the start of an idiosyncratic reaction that may result from covalent modification of normal self proteins by reactive drug metabolites. Phenytoin is metabolized by cytochrome P450 (P450) enzymes primarily to 5-(p-hydroxyphenyl-),5-phenylhydantoin (HPPH), which may be further metabolized to a catechol that spontaneously oxidizes to semiquinone and quinone species that covalently modify proteins. The aim of this study was to determine which P450s catalyze HPPH metabolism to the catechol, proposed to be the final enzymatic step in phenytoin bioactivation. Recombinant human P450s were coexpressed with NADPH-cytochrome P450 reductase in Escherichia coli. Novel bicistronic expression vectors were constructed for P450 2C19 and the three major variants of P450 2C9, i.e., 2C9*1, 2C9*2, and 2C9*3. HPPH metabolism and covalent adduct formation were assessed in parallel. P450 2C19 was the most effective catalyst of HPPH oxidation to the catechol metabolite and was also associated with the highest levels of covalent adduct formation. P450 3A4, 3A5, 3A7, 2C9*1, and 2C9*2 also catalyzed bioactivation of HPPH, but to a lesser extent. Fluorographic analysis showed that the major targets of adduct formation in bacterial membranes were the catalytic P450 forms, as suggested from experiments with human liver microsomes. These results suggest that P450 2C19 and other forms from the 2C and 3A subfamilies may be targets as well as catalysts of drug-protein adduct formation from phenytoin.