209 resultados para 3D-Printing

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid prototyping (RP) techniques have been utilised by tissue engineers to produce three-dimensional (3D) porous scaffolds. RP technologies allow the design and fabrication of complex scaffold geometries with a fully interconnected pore network. Three-dimensional printing (3DP) technique was used to fabricate scaffolds with a novel micro- and macro-architecture. In this study, a unique blend of starch-based polymer powders (cornstarch, dextran and gelatin) was developed for the 3DP process. Cylindrical scaffolds of five different designs were fabricated and post-processed to enhance the mechanical and chemical properties. The scaffold properties were characterised by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), porosity analysis and compression tests

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium silicate (CaSiO3, CS) ceramics have received significant attention for application in bone regeneration due to their excellent in vitro apatite-mineralization ability; however, how to prepare porous CS scaffolds with a controllable pore structure for bone tissue engineering still remains a challenge. Conventional methods could not efficiently control the pore structure and mechanical strength of CS scaffolds, resulting in unstable in vivo osteogenesis. The aim of this study is to set out to solve these problems by applying a modified 3D-printing method to prepare highly uniform CS scaffolds with controllable pore structure and improved mechanical strength. The in vivo osteogenesis of the prepared 3D-printed CS scaffolds was further investigated by implanting them in the femur defects of rats. The results show that the CS scaffolds prepared by the modified 3D-printing method have uniform scaffold morphology. The pore size and pore structure of CS scaffolds can be efficiently adjusted. The compressive strength of 3D-printed CS scaffolds is around 120 times that of conventional polyurethane templated CS scaffolds. 3D-Printed CS scaffolds possess excellent apatite-mineralization ability in simulated body fluids. Micro-CT analysis has shown that 3D-printed CS scaffolds play an important role in assisting the regeneration of bone defects in vivo. The healing level of bone defects implanted by 3D-printed CS scaffolds is obviously higher than that of 3D-printed b-tricalcium phosphate (b-TCP) scaffolds at both 4 and 8 weeks. Hematoxylin and eosin (H&E) staining shows that 3D-printed CS scaffolds induce higher quality of the newly formed bone than 3D-printed b-TCP scaffolds. Immunohistochemical analyses have further shown that stronger expression of human type I collagen (COL1) and alkaline phosphate (ALP) in the bone matrix occurs in the 3D-printed CS scaffolds than in the 3D-printed b-TCP scaffolds. Considering these important advantages, such as controllable structure architecture, significant improvement in mechanical strength, excellent in vivo osteogenesis and since there is no need for second-time sintering, it is indicated that the prepared 3D-printed CS scaffolds are a promising material for application in bone regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Australian Law Reform Commission is conducting an inquiry into copyright law and the digital economy in 2012 and 2013.The President, Rosalind Croucher, stated: “While the Copyright Act has been amended on occasion over the past 12 years to account for digital developments, these changes occurred before the digital economy took off. The Australian Law Reform Commission will need to find reforms that are responsive to this new environment, and to future scenarios that are still in the realm of the imagination. It is a complex and important area of law and we are looking forward to some robust debate and discussion during the course of this very important Inquiry.”

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been much interest in how intellectual property law, policy and practice will adapt to the emergence of 3D printing and the maker movement. Intellectual property lawyers will have to grapple with the impact of additive manufacturing upon a variety of forms of intellectual property — including copyright law, trade mark law, designs law, patent law and trade secrets. The disruptive technology of 3D printing will both pose opportunities and challenges for legal practitioners and policy makers.A performance by pop princess Katy Perry at the 2015 Super Bowl has sparked a public controversy over intellectual property, internet memes and 3D printing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new technology – 3D printing – has the potential to make radical changes to aspects of the way in which we live. Put simply, it allows people to download designs and turn them into physical objects by laying down successive layers of material. Replacements or parts for household objects such as toys, utensils and gadgets could become available at the press of a button. With this innovation, however, comes the need to consider impacts on a wide range of forms of intellectual property, as Dr Matthew Rimmer explains. 3D Printing is the latest in a long line of disruptive technologies – including photocopiers, cassette recorders, MP3 players, personal computers, peer to peer networks, and wikis – which have challenged intellectual property laws, policies, practices, and norms. As The Economist has observed, ‘Tinkerers with machines that turn binary digits into molecules are pioneering a whole new way of making things—one that could well rewrite the rules of manufacturing in much the same way as the PC trashed the traditional world of computing.’

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Additive manufacturing or ‘3D printing’ has emerged into the mainstream in the last few years, with much hype about its revolutionary potential as the latest ‘disruptive technology’ to destroy existing business models, empower individuals and evade any kind of government control. This book examines the trajectory of 3D printing in practice and how it interacts with various areas of law, including intellectual property, product liability, gun laws, data privacy and fundamental/constitutional rights. A particular comparison is made between 3D printing and the Internet as this has been, legally-speaking, another ‘disruptive technology’ and also one on which 3D printing is partially dependent. This book is the first expert analysis of 3D printing from a legal perspective and provides a critical assessment of the extent to which existing legal regimes can be successfully applied to, and enforced vis-à-vis, 3D printing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article contributes to the discussion by analysing how users of the leading online 3D printing design repository Thingiverse manage their intellectual property (IP). 3D printing represents a fruitful case study for exploring the relationship between IP norms and practitioner culture. Although additive manufacturing technology has existed for decades, 3D printing is on the cusp of a breakout into the technological mainstream – hardware prices are falling; designs are circulating widely; consumer-friendly platforms are multiplying; and technological literacy is rising. Analysing metadata from more than 68,000 Thingiverse design files collected from the site, we examine the licensing choices made by users and explore the way this shapes the sharing practices of the site’s users. We also consider how these choices and practices connect with wider attitudes towards sharing and intellectual property in 3D printing communities. A particular focus of the article is how Thingiverse structures its regulatory framework to avoid IP liability, and the extent to which this may have a bearing on users’ conduct. The paper has three sections. First, we will offer a description of Thingiverse and how it operates in the 3D printing ecosystem, noting the legal issues that have arisen regarding Thingiverse’s Terms of Use and its allocation of intellectual property rights. Different types of Thingiverse licences will be detailed and explained. Second, the empirical metadata we have collected from Thingiverse will be presented, including the methods used to obtain this information. Third, we will present findings from this data on licence choice and the public availability of user designs. Fourth, we will look at the implications of these findings and our conclusions regarding the particular kind of sharing ethic that is present in Thingiverse; we also consider the “closed” aspects of this community and what this means for current debates about “open” innovation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

New-generation biomaterials for bone regenerations should be highly bioactive, resorbable and mechanically strong. Mesoporous bioactive glass (MBG), as a novel bioactive material, has been used for the study of bone regeneration due to its excellent bioactivity, degradation and drug-delivery ability; however, how to construct a 3D MBG scaffold (including other bioactive inorganic scaffolds) for bone regeneration still maintains a significant challenge due to its/their inherit brittleness and low strength. In this brief communication, we reported a new facile method to prepare hierarchical and multifunctional MBG scaffolds with controllable pore architecture, excellent mechanical strength and mineralization ability for bone regeneration application by a modified 3D-printing technique using polyvinylalcohol (PVA), as a binder. The method provides a new way to solve the commonly existing issues for inorganic scaffold materials, for example, uncontrollable pore architecture, low strength, high brittleness and the requirement for the second sintering at high temperature. The obtained 3D-printing MBG scaffolds possess a high mechanical strength which is about 200 times for that of traditional polyurethane foam template-resulted MBG scaffolds. They have highly controllable pore architecture, excellent apatite-mineralization ability and sustained drug-delivery property. Our study indicates that the 3D-printed MBG scaffolds may be an excellent candidate for bone regeneration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

3D printing (3Dp) has long been used in the manufacturing sector as a way to automate, accelerate production and reduce waste materials. It is able to build a wide variety of objects if the necessary specifications are provided to the printer and no problems are presented by the limited range of materials available. With 3Dp becoming cheaper, more reliable and, as a result, more prevalent in the world at large, it may soon make inroads into the construction industry. Little is known however, of 3Dp in current use the construction industry and its potential for the future and this paper seeks to rectify this situation by providing a review of the relevant literature. In doing this, the three main 3Dp methods of contour crafting, concrete printing and D-shape 3Dp are described which, as opposed to the traditional construction method of cutting materials down to size, deliver only what is needed for completion, vastly reducing waste. Also identified is 3Dp’s potential to enable buildings to be constructed many times faster and with significantly reduced labour costs. In addition, it is clear that construction 3Dp can allow the further inclusion of Building Information Modelling into the construction process - streamlining and improving the scheduling requirements of a project. However, current 3Dp processes are known to be costly, unsuited to large-scale products and conventional design approaches, and have a very limited range of materials that can be used. Moreover, the only successful examples of construction in action to date have occurred in controlled laboratory environments and, as real world trials have yet to be completed, it is yet to be seen whether it can be it equally proficient in practical situations. Key Words: 3D Printing; Contour Crafting; Concrete Printing; D-shape; Building Automation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study used the specific example of 3D printing with acrylonitrile butadiene styrene (ABS) as a means to investigate the potential usefulness of benchtop rapid prototyping as a technique for producing patient specific phantoms for radiotherapy dosimetry. Three small cylinders and one model of a human lung were produced via in-house 3D printing with ABS, using 90%, 50%, 30% and 10% ABS infill densities. These phantom samples were evaluated in terms of their geometric accuracy, tissue equivalence and radiation hardness, when irradiated using a range of clinical radiotherapy beams. The measured dimensions of the small cylindrical phantoms all matched their planned dimensions, within 1mm. The lung phantom was less accurately matched to the lung geometry on which it was based, due to simplifications introduced during the phantom design process. The mass densities, electron densities and linear attenuation coefficients identified using CT data, as well as the results of film measurements made using megavoltage photon and electron beams, indicated that phantoms printed with ABS, using infill densities of 30% or more, are potentially useful as lung- and tissue-equivalent phantoms for patient-specific radiotherapy dosimetry. All cylindrical 3D printed phantom samples were found to be unaffected by prolonged radiation and to accurately match their design specifications. However, care should be taken to avoid oversimplifying anatomical structures when printing more complex phantoms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A small scale sculpture that contributes towards my ongoing explorations into how our collective ability to sustain (the future) is as much a cultural problematic as it is an economic or technological one. The curatorial brief of the project was a technical one - in that each curated artist was to design a piece in CAD suitable for 3D resin printing - The object should be entirely generated through 3D visualisation and modelling tools and should be machined and shipped within the dimensions of 6cm x 6cm x 6cm. My design for this brief was influenced by recent research I had conducted in Mildura in the Sunraysia irrigated region of NW Victoria. Each name set within the work is an Australian soldier/settler – who, on returning from the ‘Great War’ was duly awarded a ‘block’ in Australia’s new inland irrigated settlements - with the explicit task of clearing it to plant and reap. Through their concerted and well-intentioned efforts, these workers began to profoundly re-shape Australia’s marginal country - inadvertently presaging the bleak future faced today by many of Australia’s inland lands and river systems. Furthermore, through that time's predominant colonial conception of ‘terra nullius’ (this land is unoccupied and therefore free to be claimed) they each played a small but formative part in building the profound cultural divide between land and peoples that still haunts Australia today. THE EXHIBITION: Inside Out is a compelling international touring exhibition featuring forty-six miniature sculptures produced in resin using 3D printing technologies. Developments in virtual computer visualisation and integrated digital technologies are giving contemporary makers new insight and opportunities to create objects and forms which were previously impossible to produce or difficult to envisage. The exhibition is the result of collaboration between the Art Technology Coalition, the University of Technology Sydney and RMIT University in Australia along with De Montfort University, Manchester Metropolitan University and Dartington College of Arts at University College Falmouth in the United Kingdom.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rapid prototyping (RP) is a common name for several techniques, which read in data from computer-aided design (CAD) drawings and manufacture automatically threedimensional objects layer-by-layer according to the virtual design. The utilization of RP in tissue engineering enables the production of three-dimensional scaffolds with complex geometries and very fine structures. Adding micro- and nanometer details into the scaffolds improves the mechanical properties of the scaffold and ensures better cell adhesion to the scaffold surface. Thus, tissue engineering constructs can be customized according to the data acquired from the medical scans to match the each patient’s individual needs. In addition RP enables the control of the scaffold porosity making it possible to fabricate applications with desired structural integrity. Unfortunately, every RP process has its own unique disadvantages in building tissue engineering scaffolds. Hence, the future research should be focused into the development of RP machines designed specifically for fabrication of tissue engineering scaffolds, although RP methods already can serve as a link between tissue and engineering.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

YEAR: 2010 ROLE: Artist FORMAT: Miniature 3D Sculpture produced in resin using 3D printing technologies. WITH: International Touring Show ‘Inside Out’ WHAT: A miniature sculpture that contributes towards my ongoing explorations into how our collective ability to sustain (the future) is as much a cultural problematic as it is an economic or technological one. OVERVIEW: The curatorial brief was for each curated artist was to design a piece in CAD suitable for 3D resin printing - The object should be entirely generated through 3D visualisation and modelling tools and should be machined and shipped within the dimensions of 6cm x 6cm x 6cm. My design for this brief was influenced by recent research I had conducted in Mildura in the Sunraysia irrigated region of NW Victoria. Each name set within the work is an Australian soldier/settler – who, on returning from the ‘Great War’ was duly awarded a ‘block’ in Australia’s new inland irrigated settlements - with the explicit task of clearing it to plant and reap. Through their concerted and well-intentioned efforts, these workers began to profoundly re-shape Australia’s marginal country - inadvertently presaging the bleak future faced today by many of Australia’s inland lands and river systems. Furthermore, through that time's predominant colonial conception of ‘terra nullius’ (this land is unoccupied and therefore free to be claimed) they each played a small but formative part in building the profound cultural divide between land and peoples that still haunts Australia today. THE EXHIBITION: Inside Out is a compelling international touring exhibition featuring forty-six miniature sculptures produced in resin using 3D printing technologies. Developments in virtual computer visualisation and integrated digital technologies are giving contemporary makers new insight and opportunities to create objects and forms which were previously impossible to produce or difficult to envisage. The exhibition is the result of collaboration between the Art Technology Coalition, the University of Technology Sydney and RMIT University in Australia along with De Montfort University, Manchester Metropolitan University and Dartington College of Arts at University College Falmouth in the United Kingdom.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bioceramics play an important role in repairing and regenerating bone defects. Annually, more than 500,000 bone graft procedures are performed in the United states and approximately 2.2 million are conducted worldwide. The estimated cost of these procedures approaches $2.5billion per year. Around 60% of the bone graft substitutes available on the market involve bioceramics. It is reported that bioceramics in the world market increase by 9% per year. For this reason, the research of bioceramics has been one of the most active areas during, the past several years. Considering the significant importance of bioceramics, our goal was to compile this book to review the latest research advances in the field of bioceramics. The text also summarizes our work during the past 10 years in an effort to share innovative concepts, design of bioceramisc, and methods for material synthesis and drug delivery. We anticipate that this text will provide some useful information and guidance in the bioceramics field for biomedical engineering researchers and material scientists. Information on novel mesoporous bioactive glasses and silicate-based ceramics for bone regeneration and drug delivery are presented. Mesoporous bioactive glasses have shown multifunctional characteristics of bone regeneration and drug delivery due to their special mesopore structures,whereas silicated-based bioceramics, as typical third-generation biomaterials,possess significant osteostimulation properties. Silica nanospheres with a core-shell structure and specific properties for controllable drug delivery have been carefully reviewed-a variety of advanced synthetic strategies have been developed to construct functional mesoporous silica nanoparticles with a core-shell structure, including hollow, magnetic, or luminescent, and other multifunctional core-shell mesoporous silica nanoparticles. In addition, multifunctional drug delivery systems based on these nanoparticles have been designed and optimized to deliver the drugs into the targeted organs or cells,with a controllable release fashioned by virtue of various internal and external triggers. The novel 3D-printing technique to prepare advanced bioceramic scaffolds for bone tissue engineering applications has been highlighted, including the preparation, mechanical strength, and biological properties of 3D-printed porous scaffolds of calcium phosphate cement and silicate bioceramics. Three-dimensional printing techniques offer improved large-pore structure and mechanical strength. In addition , biomimetic preparation and controllable crystal growth as well as biomineralization of bioceramics are summarized, showing the latest research progress in this area. Finally, inorganic and organic composite materials are reviewed for bone regeneration and gene delivery. Bioactive inorganic and organic composite materials offer unique biological, electrical, and mechanical properties for designing excellent bone regeneration or gene delivery systems. It is our sincere hope that this book will updated the reader as to the research progress of bioceramics and their applications in bone repair and regeneration. It will be the best reward to all the contributors of this book if their efforts herein in some way help reader in any part of their study, research, and career development.