771 resultados para 3D modelling

em Queensland University of Technology - ePrints Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The design of pre-contoured fracture fixation implants (plates and nails) that correctly fit the anatomy of a patient utilises 3D models of long bones with accurate geometric representation. 3D data is usually available from computed tomography (CT) scans of human cadavers that generally represent the above 60 year old age group. Thus, despite the fact that half of the seriously injured population comes from the 30 year age group and below, virtually no data exists from these younger age groups to inform the design of implants that optimally fit patients from these groups. Hence, relevant bone data from these age groups is required. The current gold standard for acquiring such data–CT–involves ionising radiation and cannot be used to scan healthy human volunteers. Magnetic resonance imaging (MRI) has been shown to be a potential alternative in the previous studies conducted using small bones (tarsal bones) and parts of the long bones. However, in order to use MRI effectively for 3D reconstruction of human long bones, further validations using long bones and appropriate reference standards are required. Accurate reconstruction of 3D models from CT or MRI data sets requires an accurate image segmentation method. Currently available sophisticated segmentation methods involve complex programming and mathematics that researchers are not trained to perform. Therefore, an accurate but relatively simple segmentation method is required for segmentation of CT and MRI data. Furthermore, some of the limitations of 1.5T MRI such as very long scanning times and poor contrast in articular regions can potentially be reduced by using higher field 3T MRI imaging. However, a quantification of the signal to noise ratio (SNR) gain at the bone - soft tissue interface should be performed; this is not reported in the literature. As MRI scanning of long bones has very long scanning times, the acquired images are more prone to motion artefacts due to random movements of the subject‟s limbs. One of the artefacts observed is the step artefact that is believed to occur from the random movements of the volunteer during a scan. This needs to be corrected before the models can be used for implant design. As the first aim, this study investigated two segmentation methods: intensity thresholding and Canny edge detection as accurate but simple segmentation methods for segmentation of MRI and CT data. The second aim was to investigate the usability of MRI as a radiation free imaging alternative to CT for reconstruction of 3D models of long bones. The third aim was to use 3T MRI to improve the poor contrast in articular regions and long scanning times of current MRI. The fourth and final aim was to minimise the step artefact using 3D modelling techniques. The segmentation methods were investigated using CT scans of five ovine femora. The single level thresholding was performed using a visually selected threshold level to segment the complete femur. For multilevel thresholding, multiple threshold levels calculated from the threshold selection method were used for the proximal, diaphyseal and distal regions of the femur. Canny edge detection was used by delineating the outer and inner contour of 2D images and then combining them to generate the 3D model. Models generated from these methods were compared to the reference standard generated using the mechanical contact scans of the denuded bone. The second aim was achieved using CT and MRI scans of five ovine femora and segmenting them using the multilevel threshold method. A surface geometric comparison was conducted between CT based, MRI based and reference models. To quantitatively compare the 1.5T images to the 3T MRI images, the right lower limbs of five healthy volunteers were scanned using scanners from the same manufacturer. The images obtained using the identical protocols were compared by means of SNR and contrast to noise ratio (CNR) of muscle, bone marrow and bone. In order to correct the step artefact in the final 3D models, the step was simulated in five ovine femora scanned with a 3T MRI scanner. The step was corrected using the iterative closest point (ICP) algorithm based aligning method. The present study demonstrated that the multi-threshold approach in combination with the threshold selection method can generate 3D models from long bones with an average deviation of 0.18 mm. The same was 0.24 mm of the single threshold method. There was a significant statistical difference between the accuracy of models generated by the two methods. In comparison, the Canny edge detection method generated average deviation of 0.20 mm. MRI based models exhibited 0.23 mm average deviation in comparison to the 0.18 mm average deviation of CT based models. The differences were not statistically significant. 3T MRI improved the contrast in the bone–muscle interfaces of most anatomical regions of femora and tibiae, potentially improving the inaccuracies conferred by poor contrast of the articular regions. Using the robust ICP algorithm to align the 3D surfaces, the step artefact that occurred by the volunteer moving the leg was corrected, generating errors of 0.32 ± 0.02 mm when compared with the reference standard. The study concludes that magnetic resonance imaging, together with simple multilevel thresholding segmentation, is able to produce 3D models of long bones with accurate geometric representations. The method is, therefore, a potential alternative to the current gold standard CT imaging.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper illustrates the use of finite element (FE) technique to investigate the behaviour of laminated glass (LG) panels under blast loads. Two and three dimensional (2D and 3D) modelling approaches available in LS-DYNA FE code to model LG panels are presented. Results from the FE analysis for mid-span deflection and principal stresses compared well with those from large deflection plate theory. The FE models are further validated using the results from a free field blast test on a LG panel. It is evident that both 2D and 3D LG models predict the experimental results with reasonable accuracy. The 3D LG models give slightly more accurate results but require considerably more computational time compared to the 2D LG models.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An important application of solar thermal storage is for power generation or process heating. Low-temperature thermal storage in a packed rock bed is considered the best option for thermal storage for solar drying applications. In this chapter, mathematical formulations for conical have been developed. The model equations are solved numerically for charging/discharging cycles utilizing MATLAB. Results were compared with rock-bed storage with standard straight tank. From the simulated results, the temperature distribution was found to be more uniform in the truncated conical rock-bed storage. Also, the pressure drop over a long period of time in the conical thermal storage was as low as 25 Pa. Hence, the amount of power required from a centrifugal fan would be significantly lower. The flow of air inside the tank is simulated in SolidWorks software. From flow simulation, 3D modelling of flow is obtained to capture the actual scenario inside the tank.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

3D models of long bones are being utilised for a number of fields including orthopaedic implant design. Accurate reconstruction of 3D models is of utmost importance to design accurate implants to allow achieving a good alignment between two bone fragments. Thus for this purpose, CT scanners are employed to acquire accurate bone data exposing an individual to a high amount of ionising radiation. Magnetic resonance imaging (MRI) has been shown to be a potential alternative to computed tomography (CT) for scanning of volunteers for 3D reconstruction of long bones, essentially avoiding the high radiation dose from CT. In MRI imaging of long bones, the artefacts due to random movements of the skeletal system create challenges for researchers as they generate inaccuracies in the 3D models generated by using data sets containing such artefacts. One of the defects that have been observed during an initial study is the lateral shift artefact occurring in the reconstructed 3D models. This artefact is believed to result from volunteers moving the leg during two successive scanning stages (the lower limb has to be scanned in at least five stages due to the limited scanning length of the scanner). As this artefact creates inaccuracies in the implants designed using these models, it needs to be corrected before the application of 3D models to implant design. Therefore, this study aimed to correct the lateral shift artefact using 3D modelling techniques. The femora of five ovine hind limbs were scanned with a 3T MRI scanner using a 3D vibe based protocol. The scanning was conducted in two halves, while maintaining a good overlap between them. A lateral shift was generated by moving the limb several millimetres between two scanning stages. The 3D models were reconstructed using a multi threshold segmentation method. The correction of the artefact was achieved by aligning the two halves using the robust iterative closest point (ICP) algorithm, with the help of the overlapping region between the two. The models with the corrected artefact were compared with the reference model generated by CT scanning of the same sample. The results indicate that the correction of the artefact was achieved with an average deviation of 0.32 ± 0.02 mm between the corrected model and the reference model. In comparison, the model obtained from a single MRI scan generated an average error of 0.25 ± 0.02 mm when compared with the reference model. An average deviation of 0.34 ± 0.04 mm was seen when the models generated after the table was moved were compared to the reference models; thus, the movement of the table is also a contributing factor to the motion artefacts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Good daylighting design in buildings not only provides a comfortable luminous environment, but also delivers energy savings and comfortable and healthy environments for building occupants. Yet, there is still no consensus on how to assess what constitutes good daylighting design. Currently amongst building performance guidelines, Daylighting factors (DF) or minimum illuminance values are the standard; however, previous research has shown the shortcomings of these metrics. New computer software for daylighting analysis contains new more advanced metrics for daylighting (Climate Base Daylight Metrics-CBDM). Yet, these tools (new metrics or simulation tools) are not currently understood by architects and are not used within architectural firms in Australia. A survey of architectural firms in Brisbane showed the most relevant tools used by industry. The purpose of this paper is to assess and compare these computer simulation tools and new tools available architects and designers for daylighting. The tools are assessed in terms of their ease of use (e.g. previous knowledge required, complexity of geometry input, etc.), efficiency (e.g. speed, render capabilities, etc.) and outcomes (e.g. presentation of results, etc. The study shows tools that are most accessible for architects, are those that import a wide variety of files, or can be integrated into the current 3d modelling software or package. These software’s need to be able to calculate for point in times simulations, and annual analysis. There is a current need in these software solutions for an open source program able to read raw data (in the form of spreadsheets) and show that graphically within a 3D medium. Currently, development into plug-in based software’s are trying to solve this need through third party analysis, however some of these packages are heavily reliant and their host program. These programs however which allow dynamic daylighting simulation, which will make it easier to calculate accurate daylighting no matter which modelling platform the designer uses, while producing more tangible analysis today, without the need to process raw data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Weta possess typical Ensifera ears. Each ear comprises three functional parts: two equally sized tympanal membranes, an underlying system of modified tracheal chambers, and the auditory sensory organ, the crista acustica. This organ sits within an enclosed fluid-filled channel-previously presumed to be hemolymph. The role this channel plays in insect hearing is unknown. We discovered that the fluid within the channel is not actually hemolymph, but a medium composed principally of lipid from a new class. Three-dimensional imaging of this lipid channel revealed a previously undescribed tissue structure within the channel, which we refer to as the olivarius organ. Investigations into the function of the olivarius reveal de novo lipid synthesis indicating that it is producing these lipids in situ from acetate. The auditory role of this lipid channel was investigated using Laser Doppler vibrometry of the tympanal membrane, which shows that the displacement of the membrane is significantly increased when the lipid is removed from the auditory system. Neural sensitivity of the system, however, decreased upon removal of the lipid-a surprising result considering that in a typical auditory system both the mechanical and auditory sensitivity are positively correlated. These two results coupled with 3D modelling of the auditory system lead us to hypothesize a model for weta audition, relying strongly on the presence of the lipid channel. This is the first instance of lipids being associated with an auditory system outside of the Odentocete cetaceans, demonstrating convergence for the use of lipids in hearing.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hybrid face recognition, using image (2D) and structural (3D) information, has explored the fusion of Nearest Neighbour classifiers. This paper examines the effectiveness of feature modelling for each individual modality, 2D and 3D. Furthermore, it is demonstrated that the fusion of feature modelling techniques for the 2D and 3D modalities yields performance improvements over the individual classifiers. By fusing the feature modelling classifiers for each modality with equal weights the average Equal Error Rate improves from 12.60% for the 2D classifier and 12.10% for the 3D classifier to 7.38% for the Hybrid 2D+3D clasiffier.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This Industry focused report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Traditionally, conceptual modelling of business processes involves the use of visual grammars for the representation of, amongst other things, activities, choices and events. These grammars, while very useful for experts, are difficult to understand by naive stakeholders. Annotations of such process models have been developed to assist in understanding aspects of these grammars via map-based approaches, and further work has looked at forms of 3D conceptual models. However, no one has sought to embed the conceptual models into a fully featured 3D world, using the spatial annotations to explicate the underlying model clearly. In this paper, we present an approach to conceptual process model visualisation that enhances a 3D virtual world with annotations representing process constructs, facilitating insight into the developed model. We then present a prototype implementation of a 3D Virtual BPMN Editor that embeds BPMN process models into a 3D world. We show how this gives extra support for tasks performed by the conceptual modeller, providing better process model communication to stakeholders..

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Visualisation provides a method to efficiently convey and understand the complex nature and processes of groundwater systems. This technique has been applied to the Lockyer Valley to aid in comprehending the current condition of the system. The Lockyer Valley in southeast Queensland hosts intensive irrigated agriculture sourcing groundwater from alluvial aquifers. The valley is around 3000 km2 in area and the alluvial deposits are typically 1-3 km wide and to 20-35 m deep in the main channels, reducing in size in subcatchments. The configuration of the alluvium is of a series of elongate “fingers”. In this roughly circular valley recharge to the alluvial aquifers is largely from seasonal storm events, on the surrounding ranges. The ranges are overlain by basaltic aquifers of Tertiary age, which overall are quite transmissive. Both runoff from these ranges and infiltration into the basalts provided ephemeral flow to the streams of the valley. Throughout the valley there are over 5,000 bores extracting alluvial groundwater, plus lesser numbers extracting from underlying sandstone bedrock. Although there are approximately 2500 monitoring bores, the only regularly monitored area is the formally declared management zone in the lower one third. This zone has a calibrated Modflow model (Durick and Bleakly, 2000); a broader valley Modflow model was developed in 2002 (KBR), but did not have extensive extraction data for detailed calibration. Another Modflow model focused on a central area river confluence (Wilson, 2005) with some local production data and pumping test results. A recent subcatchment simulation model incorporates a network of bores with short-period automated hydrographic measurements (Dvoracek and Cox, 2008). The above simulation models were all based on conceptual hydrogeological models of differing scale and detail.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Identifying, modelling and documenting business processes usually require the collaboration of many stakeholders that may be spread across companies in inter-organizational settings. While modern process modelling technologies are beginning to provide a number of features to support remote, they lack support for visual cues used in co-located collaboration. In this paper, we examine the importance of visual cues for collaboration tasks in collaborative process modelling. Based on this analysis, we present a prototype 3D virtual world process modelling tool that supports a number of visual cues to facilitate remote collaborative process model creation and validation. We then report on a preliminary analysis of the technology. In conclusion, we proceed to describe the future direction of our research with regards to the theoretical contributions expected from the evaluation of the tool.