510 resultados para 337.1
em Queensland University of Technology - ePrints Archive
Resumo:
(-)-CGP12177 is a non-conventional partial agonist that causes modest and transient increases of contractile force in human atrial trabeculae (Kaumann and Molenaar, 2008). These effects are markedly increased and maintained by inhibition of phosphodiesterase PDE3. As verified with recombinant receptors, the cardiostimulant effect of (-)-CGP12177 is mediated through a site at the beta1-adrenoceptor with lower affinity (beta1LAR) compared to the site through which (-)-CGP12177 antagonizes the effects of catecholamines (beta1HAR). However, in a recent report it was proposed that the positive inotropic effects of CGP12177 are mediated through beta3-adrenoceptors (Skeberdis et al 2008). We therefore investigated whether the effects of (-)-CGP12177 on human atrial trabeculae are antagonized by the beta3-adrenoceptor-selective antagonist L-748,337 (1 microM). (-)-CGP12177 (200 nM) caused a stable increase in force which was significantly reduced by the addition of (-)-bupranolol (1 microM), P = 0.002, (basal 4.45 ± 0.78 mN, IBMX (PDE inhibitor) 5.47 ± 1.01 mN, (-)-CGP12177 9.34 ± 1.33 mN, (-)-bupranolol 5.79 ± 1.08 mN, n = 6) but not affected by the addition of L-748,337 (1 microM), P = 0.12, (basal 4.48 ± 1.32 mN, IBMX 7.15 ± 2.28 mN, (-)-CGP12177 12.51 ± 3.71 mN, L-748,337 10.90 ± 3.49 mN, n = 6). Cumulative concentration-effect curves for (-)-CGP12177 were not shifted to the right by L-748,337 (1 microM). The –logEC50M values of (-)-CGP12177 in the absence and presence of L-748,337 were 7.21±0.09 and 7.41±0.13, respectively (data from 25 trabeculae from 8 patients, P=0.2) The positive inotropic effects of (-)-CGP12177 (IBMX present) were not antagonized by L-748,337 but were blunted by (-)-bupranolol (1 microM). The results rule out an involvement of beta3-adrenoceptors in the positive inotropic effects (-)-CGP12177 in human right atrial myocardium and are consistent with mediation through beta1LAR. Kaumann A and Molenaar P (2008) Pharmacol Ther 118, 303-336 Skeberdis VA et al (2008) J Clin Invest, 118, 3219-3227
Resumo:
BACKGROUND AND PURPOSE It has been proposed that BRL37344, SR58611 and CGP12177 activate b3-adrenoceptors in human atrium to increase contractility and L-type Ca2+ current (ICa-L). b3-adrenoceptor agonists are potentially beneficial for the treatment of a variety of diseases but concomitant cardiostimulation would be potentially harmful. It has also been proposed that (-)-CGP12177 activates the low affinity binding site of the b1-adrenoceptor in human atrium. We therefore used BRL37344, SR58611 and (-)-CGP12177 with selective b-adrenoceptor subtype antagonists to clarify cardiostimulant b-adrenoceptor subtypes in human atrium. EXPERIMENTAL APPROACH Human right atrium was obtained from patients without heart failure undergoing coronary artery bypass or valve surgery. Cardiomyocytes were prepared to test BRL37344, SR58611 and CGP12177 effects on ICa-L. Contractile effects were determined on right atrial trabeculae. KEY RESULTS BRL37344 increased force which was antagonized by blockade of b1- and b2-adrenoceptors but not by blockade of b3-adrenoceptors with b3-adrenoceptor-selective L-748,337 (1 mM). The b3-adrenoceptor agonist SR58611 (1 nM–10 mM) did not affect atrial force. BRL37344 and SR58611 did not increase ICa-L at 37°C, but did at 24°C which was prevented by L-748,337. (-)-CGP12177 increased force and ICa-L at both 24°C and 37°C which was prevented by (-)-bupranolol (1–10 mM), but not L-748,337. CONCLUSIONS AND IMPLICATIONS We conclude that the inotropic responses to BRL37344 are mediated through b1- and b2-adrenoceptors. The inotropic and ICa-L responses to (-)-CGP12177 are mediated through the low affinity site b1L-adrenoceptor of the b1-adrenoceptor. b3-adrenoceptor-mediated increases in ICa-L are restricted to low temperatures. Human atrial b3-adrenoceptors do not change contractility and ICa-L at physiological temperature.
Resumo:
This review will focus on the role of sphingosine and its phosphorylated derivative sphingosine-1-phosphate (SPP) in cell growth regulation and signal transduction. We will show that many of the effects attributed to sphingosine in quiescent Swiss 3T3 fibroblasts are mediated via its conversion to SPP. We propose that SPP has appropriate properties to function as an intracellular second messenger based on the following: it elicits diverse cellular responses; it is rapidly produced from sphingosine by a specific kinase and rapidly degraded by a specific lyase; its concentration is low in quiescent cells but increases rapidly and transiently in response to the growth factors, fetal calf serum (FCS) and platelet derived growth factor (PDGF); it releases Ca2+ from internal sources in an InsP3-independent manner; and finally, it may link sphingolipid signaling pathways to cellular ras-mediated signaling pathways by elevating phosphatidic acid levels. The effects of this novel second messenger on growth, differentiation and invasion of human breast cancer cells will be discussed. © 1994 Kluwer Academic Publishers.
Resumo:
The infrared (IR) spectroscopic data and Raman spectroscopic properties for a series of 13 “pinwheel-like” homoleptic bis(phthalocyaninato) rare earth complexes M[Pc(α-OC5H11)4]2 [M = Y and Pr–Lu except Pm; H2Pc(α-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine] have been collected and comparatively studied. Both the IR and Raman spectra for M[Pc(α-OC5H11)4]2 are more complicated than those of homoleptic bis(phthalocyaninato) rare earth analogues, namely M(Pc)2 and M[Pc(OC8H17)8]2, but resemble (for IR) or are a bit more complicated (for Raman) than those of heteroleptic counterparts M(Pc)[Pc(α-OC5H11)4], revealing the decreased molecular symmetry of these double-decker compounds, namely S8. Except for the obvious splitting of the isoindole breathing band at 1110–1123 cm−1, the IR spectra of M[Pc(α-OC5H11)4]2 are quite similar to those of corresponding M(Pc)[Pc(α-OC5H11)4] and therefore are similarly assigned. With laser excitation at 633 nm, Raman bands derived from isoindole ring and aza stretchings in the range of 1300–1600 cm−1 are selectively intensified. The IR spectra reveal that the frequencies of pyrrole stretching and pyrrole stretching coupled with the symmetrical CH bending of –CH3 groups are sensitive to the rare earth ionic size, while the Raman technique shows that the bands due to the isoindole stretchings and the coupled pyrrole and aza stretchings are similarly affected. Nevertheless, the phthalocyanine monoanion radical Pc′− IR marker band of bis(phthalocyaninato) complexes involving the same rare earth ion is found to shift to lower energy in the order M(Pc)2 > M(Pc)[Pc(α-OC5H11)4] > M[Pc(α-OC5H11)4]2, revealing the weakened π–π interaction between the two phthalocyanine rings in the same order.
Resumo:
The modification of peripherally metalated meso-η1-platiniometalloporphyrins, such as trans-[PtBr(NiDAPP)(PPh3)2] (H2DAPP = 5-phenyl-10,20-bis(3‘,5‘-di-tert-butylphenyl)porphyrin), leads to the analogous platinum(II) nitrato and triflato electrophiles in almost quantitative yields. Self-assembly reactions of these meso-platinioporphyrin tectons with pyridine, 4,4‘-bipyridine, or various meso-4-pyridylporphyrins in chloroform generate new multicomponent organometallic porphyrin arrays containing up to five porphyrin units. These new types of supramolecular arrays are formed exclusively in high yields and are stable in solution or in the solid state for extended periods. They were characterized by multinuclear NMR and UV−visible spectroscopy as well as high-resolution electrospray ionization mass spectrometry.