540 resultados para 332.642
em Queensland University of Technology - ePrints Archive
Resumo:
Data warehouse projects, today, are in an ambivalent situation. On the one hand, data warehouses are critical for a company’s success and various methodological and technological tools are sophisticatedly developed to implement them. On the other hand, a significant amount of data warehouse projects fails due to non-technical reasons such as insufficient management support or in-corporative employees. But management support and user participation can be increased dramatically with specification methods that are understandable to these user groups. This paper aims at overcoming possible non-technical failure reasons by introducing a user-adequate specification approach within the field of management information systems.
Resumo:
Business process modeling has undoubtedly emerged as a popular and relevant practice in Information Systems. Despite being an actively researched field, anecdotal evidence and experiences suggest that the focus of the research community is not always well aligned with the needs of industry. The main aim of this paper is, accordingly, to explore the current issues and the future challenges in business process modeling, as perceived by three key stakeholder groups (academics, practitioners, and tool vendors). We present the results of a global Delphi study with these three groups of stakeholders, and discuss the findings and their implications for research and practice. Our findings suggest that the critical areas of concern are standardization of modeling approaches, identification of the value proposition of business process modeling, and model-driven process execution. These areas are also expected to persist as business process modeling roadblocks in the future.
Resumo:
A key exchange protocol allows a set of parties to agree upon a secret session key over a public network. Two-party key exchange (2PKE) protocols have been rigorously analyzed under various models considering different adversarial actions. However, the analysis of group key exchange (GKE) protocols has not been as extensive as that of 2PKE protocols. Particularly, the security attribute of key compromise impersonation (KCI) resilience has so far been ignored for the case of GKE protocols. We first model the security of GKE protocols addressing KCI attacks by both outsider and insider adversaries. We then show that a few existing protocols are not secure even against outsider KCI attacks. The attacks on these protocols demonstrate the necessity of considering KCI resilience for GKE protocols. Finally, we give a new proof of security for an existing GKE protocol under the revised model assuming random oracles.
Resumo:
Providing support for reversible transformations as a basis for round-trip engineering is a significant challenge in model transformation research. While there are a number of current approaches, they require the underlying transformation to exhibit an injective behaviour when reversing changes. This however, does not serve all practical transformations well. In this paper, we present a novel approach to round-trip engineering that does not place restrictions on the nature of the underlying transformation. Based on abductive logic programming, it allows us to compute a set of legitimate source changes that equate to a given change to the target model. Encouraging results are derived from an initial prototype that supports most concepts of the Tefkat transformation language
Resumo:
In this paper we propose a method for vision only topological simultaneous localisation and mapping (SLAM). Our approach does not use motion or odometric information but a sequence of colour histograms from visited places. In particular, we address the perceptual aliasing problem which occurs using external observations only in topological navigation. We propose a Bayesian inference method to incrementally build a topological map by inferring spatial relations from the sequence of observations while simultaneously estimating the robot's location. The algorithm aims to build a small map which is consistent with local adjacency information extracted from the sequence measurements. Local adjacency information is incorporated to disambiguate places which otherwise would appear to be the same. Experiments in an indoor environment show that the proposed technique is capable of dealing with perceptual aliasing using visual observations only and successfully performs topological SLAM.
Resumo:
This paper discusses the ongoing design and use of a digital community noticeboard situated in a suburban hub. The design intention is to engage residents, collect and display local information and communications, and spark discussion. A key contribution is an understanding of Situated Display navigation that aids retrieval from a long-term collection created by and for suburban community, and engaging qualities of this collection.
Resumo:
Objective-To establish the demographic, health status and insurance determinants of pre-hospital ambulance non-usage for patients with emergency medical needs. Methods-Triage category, date of birth, sex, marital status, country of origin, method and time of arrival, ambulance insurance status, diagnosis, and disposal were collected for all patients who presented over a four month period (n=10 229) to the emergency department of a major provincial hospital. Data for patients with urgent (n=678) or critical care needs (n=332) who did not use pre-hospital care were analysed using Poisson regression. Results-Only a small percentage (6.6%) of the total sample were triaged as having urgent medical needs or critical care needs (3.2%). Predictors of usage for those with urgent care needs included age greater than 65 years (prevalence ratio (PR)=0.54; 95% confidence interval (CI)= 0.35 to 0.83), being admitted to intensive care or transferred to another hospital (PR=0.62; 95% CI=0.44 to 0.89) or ward (PR=0.72; 95% CI=0.56 to 0.93) and ambulance insurance status (PR=0.67; 95% CI=052 to 0.86). Sex, marital status, time of day and country of origin were not predictive of usage and non-usage. Predictors of usage for those with critical care needs included age 65 years or greater (PR=0.45; 95% CI=0.25 to 0.81) and a diagnosis of trauma (PR=0.49; 95% CI=0.26 to 0.92). A non-English speaking background was predictive of non-usage (PR=1.98; 95% CI=1.06 to 3.70). Sex, marital status, time of day, triage and ambulance insurance status were not predictive of non-usage. Conclusions-Socioeconomic and medical factors variously influence ambulance usage depending on the severity or urgency of the medical condition. Ambulance insurance status was less of an influence as severity of condition increased suggesting that, at a critical level of urgency, patients without insurance are willing to pay for a pre-hospital ambulance service.
Resumo:
Quantum key distribution (QKD) promises secure key agreement by using quantum mechanical systems. We argue that QKD will be an important part of future cryptographic infrastructures. It can provide long-term confidentiality for encrypted information without reliance on computational assumptions. Although QKD still requires authentication to prevent man-in-the-middle attacks, it can make use of either information-theoretically secure symmetric key authentication or computationally secure public key authentication: even when using public key authentication, we argue that QKD still offers stronger security than classical key agreement.
Resumo:
We introduce a formal model for certificateless authenticated key exchange (CL-AKE) protocols. Contrary to what might be expected, we show that the natural combination of an ID-based AKE protocol with a public key based AKE protocol cannot provide strong security. We provide the first one-round CL-AKE scheme proven secure in the random oracle model. We introduce two variants of the Diffie-Hellman trapdoor the introduced by \cite{DBLP:conf/eurocrypt/CashKS08}. The proposed key agreement scheme is secure as long as each party has at least one uncompromised secret. Thus, our scheme is secure even if the key generation centre learns the ephemeral secrets of both parties.
Resumo:
Due to the popularity of modern Collaborative Virtual Environments, there has been a related increase in their size and complexity. Developers therefore need visualisations that expose usage patterns from logged data, to understand the structures and dynamics of these complex environments. This chapter presents a new framework for the process of visualising virtual environment usage data. Major components, such as an event model, designer task model and data acquisition infrastructure are described. Interface and implementation factors are also developed, along with example visualisation techniques that make use of the new task and event model. A case study is performed to illustrate a typical scenario for the framework, and its benefits to the environment development team.
Resumo:
This paper provides a fresh analysis of the widely-used Common Scrambling Algorithm Stream Cipher (CSA-SC). Firstly, a new representation of CSA-SC with a state size of only 89 bits is given, a significant reduction from the 103 bit state of a previous CSA-SC representation. Analysis of this 89-bit representation demonstrates that the basis of a previous guess-and-determine attack is flawed. Correcting this flaw increases the complexity of that attack so that it is worse than exhaustive key search. Although that attack is not feasible, the reduced state size of our representation makes it obvious that CSA-SC is vulnerable to several generic attacks, for which feasible parameters are given.
Resumo:
Process Control Systems (PCSs) or Supervisory Control and Data Acquisition (SCADA) systems have recently been added to the already wide collection of wireless sensor networks applications. The PCS/SCADA environment is somewhat more amenable to the use of heavy cryptographic mechanisms such as public key cryptography than other sensor application environments. The sensor nodes in the environment, however, are still open to devastating attacks such as node capture, which makes designing a secure key management challenging. In this paper, a key management scheme is proposed to defeat node capture attack by offering both forward and backward secrecies. Our scheme overcomes the pitfalls which Nilsson et al.'s scheme suffers from, and is not more expensive than their scheme.
Resumo:
This paper provides new results about efficient arithmetic on Jacobi quartic form elliptic curves, y 2 = d x 4 + 2 a x 2 + 1. With recent bandwidth-efficient proposals, the arithmetic on Jacobi quartic curves became solidly faster than that of Weierstrass curves. These proposals use up to 7 coordinates to represent a single point. However, fast scalar multiplication algorithms based on windowing techniques, precompute and store several points which require more space than what it takes with 3 coordinates. Also note that some of these proposals require d = 1 for full speed. Unfortunately, elliptic curves having 2-times-a-prime number of points, cannot be written in Jacobi quartic form if d = 1. Even worse the contemporary formulae may fail to output correct coordinates for some inputs. This paper provides improved speeds using fewer coordinates without causing the above mentioned problems. For instance, our proposed point doubling algorithm takes only 2 multiplications, 5 squarings, and no multiplication with curve constants when d is arbitrary and a = ±1/2.
Resumo:
This paper presents efficient formulas for computing cryptographic pairings on the curve y 2 = c x 3 + 1 over fields of large characteristic. We provide examples of pairing-friendly elliptic curves of this form which are of interest for efficient pairing implementations.