255 resultados para 280405 Discrete Mathematics
em Queensland University of Technology - ePrints Archive
Resumo:
Privacy enhancing protocols (PEPs) are a family of protocols that allow secure exchange and management of sensitive user information. They are important in preserving users’ privacy in today’s open environment. Proof of the correctness of PEPs is necessary before they can be deployed. However, the traditional provable security approach, though well established for verifying cryptographic primitives, is not applicable to PEPs. We apply the formal method of Coloured Petri Nets (CPNs) to construct an executable specification of a representative PEP, namely the Private Information Escrow Bound to Multiple Conditions Protocol (PIEMCP). Formal semantics of the CPN specification allow us to reason about various security properties of PIEMCP using state space analysis techniques. This investigation provides us with preliminary insights for modeling and verification of PEPs in general, demonstrating the benefit of applying the CPN-based formal approach to proving the correctness of PEPs.
Resumo:
We present a novel approach for preprocessing systems of polynomial equations via graph partitioning. The variable-sharing graph of a system of polynomial equations is defined. If such graph is disconnected, then the corresponding system of equations can be split into smaller ones that can be solved individually. This can provide a tremendous speed-up in computing the solution to the system, but is unlikely to occur either randomly or in applications. However, by deleting certain vertices on the graph, the variable-sharing graph could be disconnected in a balanced fashion, and in turn the system of polynomial equations would be separated into smaller systems of near-equal sizes. In graph theory terms, this process is equivalent to finding balanced vertex partitions with minimum-weight vertex separators. The techniques of finding these vertex partitions are discussed, and experiments are performed to evaluate its practicality for general graphs and systems of polynomial equations. Applications of this approach in algebraic cryptanalysis on symmetric ciphers are presented: For the QUAD family of stream ciphers, we show how a malicious party can manufacture conforming systems that can be easily broken. For the stream ciphers Bivium and Trivium, we nachieve significant speedups in algebraic attacks against them, mainly in a partial key guess scenario. In each of these cases, the systems of polynomial equations involved are well-suited to our graph partitioning method. These results may open a new avenue for evaluating the security of symmetric ciphers against algebraic attacks.
Resumo:
In a digital world, users’ Personally Identifiable Information (PII) is normally managed with a system called an Identity Management System (IMS). There are many types of IMSs. There are situations when two or more IMSs need to communicate with each other (such as when a service provider needs to obtain some identity information about a user from a trusted identity provider). There could be interoperability issues when communicating parties use different types of IMS. To facilitate interoperability between different IMSs, an Identity Meta System (IMetS) is normally used. An IMetS can, at least theoretically, join various types of IMSs to make them interoperable and give users the illusion that they are interacting with just one IMS. However, due to the complexity of an IMS, attempting to join various types of IMSs is a technically challenging task, let alone assessing how well an IMetS manages to integrate these IMSs. The first contribution of this thesis is the development of a generic IMS model called the Layered Identity Infrastructure Model (LIIM). Using this model, we develop a set of properties that an ideal IMetS should provide. This idealized form is then used as a benchmark to evaluate existing IMetSs. Different types of IMS provide varying levels of privacy protection support. Unfortunately, as observed by Jøsang et al (2007), there is insufficient privacy protection in many of the existing IMSs. In this thesis, we study and extend a type of privacy enhancing technology known as an Anonymous Credential System (ACS). In particular, we extend the ACS which is built on the cryptographic primitives proposed by Camenisch, Lysyanskaya, and Shoup. We call this system the Camenisch, Lysyanskaya, Shoup - Anonymous Credential System (CLS-ACS). The goal of CLS-ACS is to let users be as anonymous as possible. Unfortunately, CLS-ACS has problems, including (1) the concentration of power to a single entity - known as the Anonymity Revocation Manager (ARM) - who, if malicious, can trivially reveal a user’s PII (resulting in an illegal revocation of the user’s anonymity), and (2) poor performance due to the resource-intensive cryptographic operations required. The second and third contributions of this thesis are the proposal of two protocols that reduce the trust dependencies on the ARM during users’ anonymity revocation. Both protocols distribute trust from the ARM to a set of n referees (n > 1), resulting in a significant reduction of the probability of an anonymity revocation being performed illegally. The first protocol, called the User Centric Anonymity Revocation Protocol (UCARP), allows a user’s anonymity to be revoked in a user-centric manner (that is, the user is aware that his/her anonymity is about to be revoked). The second protocol, called the Anonymity Revocation Protocol with Re-encryption (ARPR), allows a user’s anonymity to be revoked by a service provider in an accountable manner (that is, there is a clear mechanism to determine which entity who can eventually learn - and possibly misuse - the identity of the user). The fourth contribution of this thesis is the proposal of a protocol called the Private Information Escrow bound to Multiple Conditions Protocol (PIEMCP). This protocol is designed to address the performance issue of CLS-ACS by applying the CLS-ACS in a federated single sign-on (FSSO) environment. Our analysis shows that PIEMCP can both reduce the amount of expensive modular exponentiation operations required and lower the risk of illegal revocation of users’ anonymity. Finally, the protocols proposed in this thesis are complex and need to be formally evaluated to ensure that their required security properties are satisfied. In this thesis, we use Coloured Petri nets (CPNs) and its corresponding state space analysis techniques. All of the protocols proposed in this thesis have been formally modeled and verified using these formal techniques. Therefore, the fifth contribution of this thesis is a demonstration of the applicability of CPN and its corresponding analysis techniques in modeling and verifying privacy enhancing protocols. To our knowledge, this is the first time that CPN has been comprehensively applied to model and verify privacy enhancing protocols. From our experience, we also propose several CPN modeling approaches, including complex cryptographic primitives (such as zero-knowledge proof protocol) modeling, attack parameterization, and others. The proposed approaches can be applied to other security protocols, not just privacy enhancing protocols.
Resumo:
In this paper we investigate the heuristic construction of bijective s-boxes that satisfy a wide range of cryptographic criteria including algebraic complexity, high nonlinearity, low autocorrelation and have none of the known weaknesses including linear structures, fixed points or linear redundancy. We demonstrate that the power mappings can be evolved (by iterated mutation operators alone) to generate bijective s-boxes with the best known tradeoffs among the considered criteria. The s-boxes found are suitable for use directly in modern encryption algorithms.
Resumo:
Resolving a noted open problem, we show that the Undirected Feedback Vertex Set problem, parameterized by the size of the solution set of vertices, is in the parameterized complexity class Poly(k), that is, polynomial-time pre-processing is sufficient to reduce an initial problem instance (G, k) to a decision-equivalent simplified instance (G', k') where k' � k, and the number of vertices of G' is bounded by a polynomial function of k. Our main result shows an O(k11) kernelization bound.
Resumo:
Barreto-Lynn-Scott (BLS) curves are a stand-out candidate for implementing high-security pairings. This paper shows that particular choices of the pairing-friendly search parameter give rise to four subfami- lies of BLS curves, all of which offer highly efficient and implementation- friendly pairing instantiations. Curves from these particular subfamilies are defined over prime fields that support very efficient towering options for the full extension field. The coefficients for a specific curve and its correct twist are automat-ically determined without any computational effort. The choice of an extremely sparse search parameter is immediately reflected by a highly efficient optimal ate Miller loop and final exponentiation. As a resource for implementors, we give a list with examples of implementation-friendly BLS curves through several high-security levels.
Resumo:
Key establishment is a crucial cryptographic primitive for building secure communication channels between two parties in a network. It has been studied extensively in theory and widely deployed in practice. In the research literature a typical protocol in the public-key setting aims for key secrecy and mutual authentication. However, there are many important practical scenarios where mutual authentication is undesirable, such as in anonymity networks like Tor, or is difficult to achieve due to insufficient public-key infrastructure at the user level, as is the case on the Internet today. In this work we are concerned with the scenario where two parties establish a private shared session key, but only one party authenticates to the other; in fact, the unauthenticated party may wish to have strong anonymity guarantees. We present a desirable set of security, authentication, and anonymity goals for this setting and develop a model which captures these properties. Our approach allows for clients to choose among different levels of authentication. We also describe an attack on a previous protocol of Øverlier and Syverson, and present a new, efficient key exchange protocol that provides one-way authentication and anonymity.
Resumo:
The suitability of Role Based Access Control (RBAC) is being challenged in dynamic environments like healthcare. In an RBAC system, a user's legitimate access may be denied if their need has not been anticipated by the security administrator at the time of policy specification. Alternatively, even when the policy is correctly specified an authorised user may accidentally or intentionally misuse the granted permission. The heart of the challenge is the intrinsic unpredictability of users' operational needs as well as their incentives to misuse permissions. In this paper we propose a novel Budget-aware Role Based Access Control (B-RBAC) model that extends RBAC with the explicit notion of budget and cost, where users are assigned a limited budget through which they pay for the cost of permissions they need. We propose a model where the value of resources are explicitly defined and an RBAC policy is used as a reference point to discriminate the price of access permissions, as opposed to representing hard and fast rules for making access decisions. This approach has several desirable properties. It enables users to acquire unassigned permissions if they deem them necessary. However, users misuse capability is always bounded by their allocated budget and is further adjustable through the discrimination of permission prices. Finally, it provides a uniform mechanism for the detection and prevention of misuses.
Resumo:
Secure communications in wireless sensor networks operating under adversarial conditions require providing pairwise (symmetric) keys to sensor nodes. In large scale deployment scenarios, there is no prior knowledge of post deployment network configuration since nodes may be randomly scattered over a hostile territory. Thus, shared keys must be distributed before deployment to provide each node a key-chain. For large sensor networks it is infeasible to store a unique key for all other nodes in the key-chain of a sensor node. Consequently, for secure communication either two nodes have a key in common in their key-chains and they have a wireless link between them, or there is a path, called key-path, among these two nodes where each pair of neighboring nodes on this path have a key in common. Length of the key-path is the key factor for efficiency of the design. This paper presents novel deterministic and hybrid approaches based on Combinatorial Design for deciding how many and which keys to assign to each key-chain before the sensor network deployment. In particular, Balanced Incomplete Block Designs (BIBD) and Generalized Quadrangles (GQ) are mapped to obtain efficient key distribution schemes. Performance and security properties of the proposed schemes are studied both analytically and computationally. Comparison to related work shows that the combinatorial approach produces better connectivity with smaller key-chain sizes.
Resumo:
This work identifies the limitations of n-way data analysis techniques in multidimensional stream data, such as Internet chat room communications data, and establishes a link between data collection and performance of these techniques. Its contributions are twofold. First, it extends data analysis to multiple dimensions by constructing n-way data arrays known as high order tensors. Chat room tensors are generated by a simulator which collects and models actual communication data. The accuracy of the model is determined by the Kolmogorov-Smirnov goodness-of-fit test which compares the simulation data with the observed (real) data. Second, a detailed computational comparison is performed to test several data analysis techniques including svd [1], and multi-way techniques including Tucker1, Tucker3 [2], and Parafac [3].
Resumo:
This work investigates the accuracy and efficiency tradeoffs between centralized and collective (distributed) algorithms for (i) sampling, and (ii) n-way data analysis techniques in multidimensional stream data, such as Internet chatroom communications. Its contributions are threefold. First, we use the Kolmogorov-Smirnov goodness-of-fit test to show that statistical differences between real data obtained by collective sampling in time dimension from multiple servers and that of obtained from a single server are insignificant. Second, we show using the real data that collective data analysis of 3-way data arrays (users x keywords x time) known as high order tensors is more efficient than centralized algorithms with respect to both space and computational cost. Furthermore, we show that this gain is obtained without loss of accuracy. Third, we examine the sensitivity of collective constructions and analysis of high order data tensors to the choice of server selection and sampling window size. We construct 4-way tensors (users x keywords x time x servers) and analyze them to show the impact of server and window size selections on the results.
Resumo:
The purpose of this paper is to describe a new decomposition construction for perfect secret sharing schemes with graph access structures. The previous decomposition construction proposed by Stinson is a recursive method that uses small secret sharing schemes as building blocks in the construction of larger schemes. When the Stinson method is applied to the graph access structures, the number of such “small” schemes is typically exponential in the number of the participants, resulting in an exponential algorithm. Our method has the same flavor as the Stinson decomposition construction; however, the linear programming problem involved in the construction is formulated in such a way that the number of “small” schemes is polynomial in the size of the participants, which in turn gives rise to a polynomial time construction. We also show that if we apply the Stinson construction to the “small” schemes arising from our new construction, both have the same information rate.