3 resultados para 1995_12251643 CTD-160 5402801
em Queensland University of Technology - ePrints Archive
Resumo:
Using a quasi-natural voting experiment encompassing a 160-year period (1848–2009) in Switzerland, we investigate whether a higher level of complexity leads to increased reliance on trusted parliamentary representatives. We find that when more referenda are held on the same day, constituents are more likely to refer to parliamentary recommendations when making their decisions. This finding holds true even when we narrow our focus to referenda with a relatively lower voter turnout on days on which more than one referendum is held. We also demonstrate that when constituents face a higher level of complexity, they follow the parliamentary recommendations rather than those of interest groups. "Viewed as a geometric figure, the ant’s path is irregular, complex, hard to describe. But its complexity is really a complexity in the surface of the beach, not a complexity in the ant." ([1] p. 51)
Resumo:
RNA polymerase II (pol II) transcription termination requires co‐transcriptional recognition of a functional polyadenylation signal, but the molecular mechanisms that transduce this signal to pol II remain unclear. We show that Yhh1p/Cft1p, the yeast homologue of the mammalian AAUAAA interacting protein CPSF 160, is an RNA‐binding protein and provide evidence that it participates in poly(A) site recognition. Interestingly, RNA binding is mediated by a central domain composed of predicted β‐propeller‐forming repeats, which occurs in proteins of diverse cellular functions. We also found that Yhh1p/Cft1p bound specifically to the phosphorylated C‐terminal domain (CTD) of pol II in vitro and in a two‐hybrid test in vivo. Furthermore, transcriptional run‐on analysis demonstrated that yhh1 mutants were defective in transcription termination, suggesting that Yhh1p/Cft1p functions in the coupling of transcription and 3′‐end formation. We propose that direct interactions of Yhh1p/Cft1p with both the RNA transcript and the CTD are required to communicate poly(A) site recognition to elongating pol II to initiate transcription termination.
Resumo:
In [8] the authors developed a logical system based on the definition of a new non-classical connective ⊗ capturing the notion of reparative obligation. The system proved to be appropriate for handling well-known contrary-to-duty paradoxes but no model-theoretic semantics was presented. In this paper we fill the gap and define a suitable possible-world semantics for the system for which we can prove soundness and completeness. The semantics is a preference-based non-normal one extending and generalizing semantics for classical modal logics.