4 resultados para 1995_08110134 CTD-126 4902908
em Queensland University of Technology - ePrints Archive
Resumo:
miR-126 has been implicated in the processes of inflammation and angiogenesis. Through these processes, miR-126 is implicated in cancer biology, but its role there has not been well reviewed. The aim of this review is to examine the molecular mechanisms and clinicopathological significance of miR-126 in human cancers. miR-126 was shown to have roles in cancers of the gastrointestinal tract, genital tracts, breast, thyroid, lung and some other cancers. Its expression was suppressed in most of the cancers studied. The molecular mechanisms that are known to cause aberrant expression of miR-126 include alterations in gene sequence, epigenetic modification and alteration of dicer abundance. miR-126 can inhibit progression of some cancers via negative control of proliferation, migration, invasion, and cell survival. In some instances, however, miR-126 supports cancer progression via promotion of blood vessel formation. Downregulation of miR-126 induces cancer cell proliferation, migration, and invasion via targeting specific oncogenes. Also, reduced levels of miR-126 are a significant predictor of poor survival of patients in many cancers. In addition, miR-126 can alter a multitude of cellular mechanisms in cancer pathogenesis via suppressing gene translation of numerous validated targets such as PI3K, KRAS, EGFL7, CRK, ADAM9, HOXA9, IRS-1, SOX-2, SLC7A5 and VEGF. To conclude, miR-126 is commonly down-regulated in cancer, most likely due to its ability to inhibit cancer cell growth, adhesion, migration, and invasion through suppressing a range of important gene targets. Understanding these mechanisms by which miR-126 is involved with cancer pathogenesis will be useful in the development of therapeutic targets for the management of patients with cancer.
Resumo:
In [8] the authors developed a logical system based on the definition of a new non-classical connective ⊗ capturing the notion of reparative obligation. The system proved to be appropriate for handling well-known contrary-to-duty paradoxes but no model-theoretic semantics was presented. In this paper we fill the gap and define a suitable possible-world semantics for the system for which we can prove soundness and completeness. The semantics is a preference-based non-normal one extending and generalizing semantics for classical modal logics.
Resumo:
A genome-wide association study (GWAS) of educational attainment was conducted in a discovery sample of 101,069 individuals and a replication sample of 25,490. Three independent single-nucleotide polymorphisms (SNPs) are genome-wide significant (rs9320913, rs11584700, rs4851266), and all three replicate. Estimated effects sizes are small (coefficient of determination R(2) approximately 0.02%), approximately 1 month of schooling per allele. A linear polygenic score from all measured SNPs accounts for approximately 2% of the variance in both educational attainment and cognitive function. Genes in the region of the loci have previously been associated with health, cognitive, and central nervous system phenotypes, and bioinformatics analyses suggest the involvement of the anterior caudate nucleus. These findings provide promising candidate SNPs for follow-up work, and our effect size estimates can anchor power analyses in social-science genetics.
Resumo:
In this study, we investigated the expression profiles and clinicopathological significance of miR-126 in large cohort of patients with colorectal cancers as well the cellular repercussions of miR-126 in colon cancer cells along with its targets in-vitro. Down regulation of miR-126 expression was associated with histological subtypes, peri-neural tumour infiltration, microsatellite instability and pathological staging of colorectal cancers (p<0.05). Low miR-126 expression was also associated with poorer survival in patients with colorectal cancer. Analysis of matched tissues from the same patient revealed that approximately 70% of the tested patients had similar levels of expression of miR-126 in primary cancer and cancer metastases in both lymph node and distant metastases. In addition, induced overexpression of miR-126 showed reduced cell proliferation, increased apoptosis and decreased accumulation of cells in the G0-G1 phase of the colon cancer cells. Furthermore, SW480(+miR-126) cells showed reduced BCL-2 and increased P53 protein expression. To conclude, deregulation of miR-126 in colorectal cancer at the tissue and cellular levels as well as its correlation with various clinicopathological parameters confirm the cancer suppressive role of miR-126 in colorectal cancer.