5 resultados para 1480

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of how to efficiently and safely design dose finding studies. Both current and novel utility functions are explored using Bayesian adaptive design methodology for the estimation of a maximum tolerated dose (MTD). In particular, we explore widely adopted approaches such as the continual reassessment method and minimizing the variance of the estimate of an MTD. New utility functions are constructed in the Bayesian framework and are evaluated against current approaches. To reduce computing time, importance sampling is implemented to re-weight posterior samples thus avoiding the need to draw samples using Markov chain Monte Carlo techniques. Further, as such studies are generally first-in-man, the safety of patients is paramount. We therefore explore methods for the incorporation of safety considerations into utility functions to ensure that only safe and well-predicted doses are administered. The amalgamation of Bayesian methodology, adaptive design and compound utility functions is termed adaptive Bayesian compound design (ABCD). The performance of this amalgamation of methodology is investigated via the simulation of dose finding studies. The paper concludes with a discussion of results and extensions that could be included into our approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective Despite ‘hospital resilience’ gaining prominence in recent years, it remains poorly defined. This article aims to define hospital resilience, build a preliminary conceptual framework and highlight possible approaches to measurement. Methods Searches were conducted of the commonly used health databases to identify relevant literature and reports. Search terms included ‘resilience and framework or model’ or ‘evaluation or assess or measure and hospital and disaster or emergency or mass casualty and resilience or capacity or preparedness or response or safety’. Articles were retrieved that focussed on disaster resilience frameworks and the evaluation of various hospital capacities. Result A total of 1480 potentially eligible publications were retrieved initially but the final analysis was conducted on 47 articles, which appeared to contribute to the study objectives. Four disaster resilience frameworks and 11 evaluation instruments of hospital disaster capacity were included. Discussion and conclusion Hospital resilience is a comprehensive concept derived from existing disaster resilience frameworks. It has four key domains: hospital safety; disaster preparedness and resources; continuity of essential medical services; recovery and adaptation. These domains were categorised according to four criteria, namely, robustness, redundancy, resourcefulness and rapidity. A conceptual understanding of hospital resilience is essential for an intellectual basis for an integrated approach to system development. This article (1) defines hospital resilience; (2) constructs conceptual framework (including key domains); (3) proposes comprehensive measures for possible inclusion in an evaluation instrument, and; (4) develops a matrix of critical issues to enhance hospital resilience to cope with future disasters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We identify the 10 major terrestrial and marine ecosystems in Australia most vulnerable to tipping points, in which modest environmental changes can cause disproportionately large changes in ecosystem properties. To accomplish this we independently surveyed the coauthors of this paper to produce a list of candidate ecosystems, and then refined this list during a 2-day workshop. The list includes (1) elevationally restricted mountain ecosystems, (2) tropical savannas, (3) coastal floodplains and wetlands, (4) coral reefs, (5) drier rainforests, (6) wetlands and floodplains in the Murray-Darling Basin, (7) the Mediterranean ecosystems of southwestern Australia, (8) offshore islands, (9) temperate eucalypt forests, and (10) salt marshes and mangroves. Some of these ecosystems are vulnerable to widespread phase-changes that could fundamentally alter ecosystem properties such as habitat structure, species composition, fire regimes, or carbon storage. Others appear susceptible to major changes across only part of their geographic range, whereas yet others are susceptible to a large-scale decline of key biotic components, such as small mammals or stream-dwelling amphibians. For each ecosystem we consider the intrinsic features and external drivers that render it susceptible to tipping points, and identify subtypes of the ecosystem that we deem to be especially vulnerable. © 2011 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose To evaluate the validity of a uniaxial accelerometer (MTI Actigraph) for measuring physical activity in people with acquired brain injury (ABI) using portable indirect calorimetry (Cosmed K4b(2)) as a criterion measure. Methods Fourteen people with ABI and related gait pattern impairment (age 32 +/- 8 yr) wore an MTI Actigraph that measured activity (counts(.)min-(1)) and a Cosmed K4b(2) that measured oxygen consumption (mL(.)kg(-1.)min(-1)) during four activities: quiet sitting (QS) and comfortable paced (CP), brisk paced (BP), and fast paced (FP) walking. MET levels were predicted from Actigraph counts using a published equation and compared with Cosmed measures. Predicted METs for each of the 56 activity bouts (14 participants X 4 bouts) were classified (light, moderate, vigorous, or very vigorous intensity) and compared with Cosmed-based classifications. Results Repeated-measures ANOVA indicated that walking condition intensities were significantly different (P < 0.05) and the Actigraph detected the differences. Overall correlation between measured and predicted METs was positive, moderate, and significant (r = 0.74). Mean predicted METs were not significantly different from measured for CP and BP, but for FP walking, predicted METs were significantly less than measured (P < 0.05). The Actigraph correctly classified intensity for 76.8% of all activity bouts and 91.5% of light- and moderate-intensity bouts. Conclusions Actigraph counts provide a valid index of activity across the intensities investigated in this study. For light to moderate activity, Actigraph-based estimates of METs are acceptable for group-level analysis and are a valid means of classifying activity intensity. The Actigraph significantly underestimated higher intensity activity, although, in practice, this limitation will have minimal impact on activity measurement of most community-dwelling people with ABI.