2 resultados para 14-OM-01

em Queensland University of Technology - ePrints Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The infrared (IR) spectroscopic data and Raman spectroscopic properties for a series of 13 “pinwheel-like” homoleptic bis(phthalocyaninato) rare earth complexes M[Pc(α-OC5H11)4]2 [M = Y and Pr–Lu except Pm; H2Pc(α-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine] have been collected and comparatively studied. Both the IR and Raman spectra for M[Pc(α-OC5H11)4]2 are more complicated than those of homoleptic bis(phthalocyaninato) rare earth analogues, namely M(Pc)2 and M[Pc(OC8H17)8]2, but resemble (for IR) or are a bit more complicated (for Raman) than those of heteroleptic counterparts M(Pc)[Pc(α-OC5H11)4], revealing the decreased molecular symmetry of these double-decker compounds, namely S8. Except for the obvious splitting of the isoindole breathing band at 1110–1123 cm−1, the IR spectra of M[Pc(α-OC5H11)4]2 are quite similar to those of corresponding M(Pc)[Pc(α-OC5H11)4] and therefore are similarly assigned. With laser excitation at 633 nm, Raman bands derived from isoindole ring and aza stretchings in the range of 1300–1600 cm−1 are selectively intensified. The IR spectra reveal that the frequencies of pyrrole stretching and pyrrole stretching coupled with the symmetrical CH bending of –CH3 groups are sensitive to the rare earth ionic size, while the Raman technique shows that the bands due to the isoindole stretchings and the coupled pyrrole and aza stretchings are similarly affected. Nevertheless, the phthalocyanine monoanion radical Pc′− IR marker band of bis(phthalocyaninato) complexes involving the same rare earth ion is found to shift to lower energy in the order M(Pc)2 > M(Pc)[Pc(α-OC5H11)4] > M[Pc(α-OC5H11)4]2, revealing the weakened π–π interaction between the two phthalocyanine rings in the same order.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To describe distributions of ocular biometry and their associations with refraction in 7- and 14-year-old children in urban areas of Anyang, central China. Methods: A total of 2271 grade 1 students aged 7.1 ± 0.4 years and 1786 grade 8 students aged 13.7 ± 0.5 years were measured with ocular biometry and cycloplegic refraction. A parental myopia questionnaire was administered to parents. Results: Mean axial length, anterior chamber depth, lens thickness, central corneal thickness, corneal diameter, corneal radius of curvature, axial length/corneal radius of curvature ratio, and spherical equivalent refraction were 22.72 ± 0.76 mm, 2.89 ± 0.24 mm, 3.61 ± 0.19 mm, 540.5 ± 31 μm, 12.06 ± 0.44 mm, 7.80 ± 0.25 mm, 2.91 ± 0.08, and +0.95 ± 1.05 diopters (D), respectively, in 7-year-old children. They were 24.39 ± 1.13 mm, 3.42 ± 0.41 mm, 3.18 ± 0.24 mm, 548.9 ± 33 μm, 12.03 ± 0.43 mm, 7.80 ± 0.26 mm, 3.13 ± 0.14, and −2.06 ± 2.20 D, respectively, in 14-year-old children. Compared with 7-year-old children, the older group had significantly more myopia (−3.0 D), longer axial length (1.7 mm), deeper anterior chamber depth (0.3 mm), thinner lens thickness (−0.2 mm), thicker central corneal thickness (10 μm), and greater axial length/corneal radius of curvature ratio (0.22) (all p < 0.001), as well as smaller corneal diameter (−0.03 mm, p = 0.02) and similar corneal radius of curvature. Sex differences were similar in both age groups, with boys having longer axial length (0.5 mm), deeper anterior chamber depth (0.1 mm), shorter lens thickness (0.03 mm), greater central corneal thickness (5 μm), greater corneal diameter (0.15 mm), and greater corneal radius of curvature (0.14 mm) than girls (all p < 0.01). The most important variables related to spherical equivalent refraction were vitreous length, corneal radius of curvature, and lens thickness. Conclusions: The 14-year-old group had larger parameter dimensions than the 7-year-old group except for corneal radius of curvature (unchanged) and lens thickness and corneal diameter (both smaller). Boys had large parameter dimensions than girls except for lens thickness (smaller). Axial length, corneal radius of curvature, and lens thickness were the most important determinants of refraction.