323 resultados para 12930-006
em Queensland University of Technology - ePrints Archive
Resumo:
This series of research vignettes is aimed at sharing current and interesting research findings from our team and other international Entrepreneurship researchers. In this vignette, we summarise the findings from a paper written by Avaid Pe'er and Ilan Vertinsky that examines "Why saving jobs and supporting failing firms can be detrimental".
Resumo:
Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.
Resumo:
Many factors affect the airflow patterns, thermal comfort, contaminant removal efficiency and indoor air quality at individual workstations in office buildings. In this study, four ventilation systems were used in a test chamber designed to represent an area of a typical office building floor and reproduce the real characteristics of a modern office space. Measurements of particle concentration and thermal parameters (temperature and velocity) were carried out for each of the following types of ventilation systems: a) conventional air distribution system with ceiling supply and return; b) conventional air distribution system with ceiling supply and return near the floor; c) underfloor air distribution system; and d) split system. The measurements aimed to analyse the particle removal efficiency in the breathing zone and the impact of particle concentration on an individual at the workstation. The efficiency of the ventilation system was analysed by measuring particle size and concentration, ventilation effectiveness and the Indoor/Outdoor ratio. Each ventilation system showed different airflow patterns and the efficiency of each ventilation system in the removal of the particles in the breathing zone showed no correlation with particle size and the various methods of analyses used.
Resumo:
Research has suggested that corporate venturing is crucial to strategic renewal and firm performance, yet scholars still debate the appropriate organizational configurations to facilitate the creation of new businesses in existing organizations. Our study investigates the effectiveness of combining structural differentiation with formal and informal organizational as well as top management team integration mechanisms in establishing an appropriate context for venturing activities. Our findings suggest that structural differentiation has a positive effect on corporate venturing. In addition, our study indicates that a shared vision has a positive effect on venturing in a structurally differentiated context. Socially integrated senior teams and cross-functional interfaces, however, are ineffective integration mechanisms for establishing linkages across differentiated units and for successfully pursuing corporate venturing.
Resumo:
Objective The review addresses two distinct sets of issues: 1. specific functionality, interface, and calculation problems that presumably can be fixed or improved; and 2. the more fundamental question of whether the system is close to being ready for ‘commercial prime time’ in the North American market. Findings Many of our comments relate to the first set of issues, especially sections B and C. Sections D and E deal with the second set. Overall, we feel that LCADesign represents a very impressive step forward in the ongoing quest to link CAD with LCA tools and, more importantly, to link the world of architectural practice and that of environmental research. From that perspective, it deserves continued financial support as a research project. However, if the decision is whether or not to continue the development program from a purely commercial perspective, we are less bullish. In terms of the North American market, there are no regulatory or other drivers to press design teams to use a tool of this nature. There is certainly interest in this area, but the tools must be very easy to use with little or no training. Understanding the results is as important in this regard as knowing how to apply the tool. Our comments are fairly negative when it comes to that aspect. Our opinion might change to some degree when the ‘fixes’ are made and the functionality improved. However, as discussed in more detail in the following sections, we feel that the multi-step process — CAD to IFC to LCADesign — could pose a serious problem in terms of market acceptance. The CAD to IFC part is impossible for us to judge with the information provided, and we can’t even begin to answer the question about the ease of using the software to import designs, but it appears cumbersome from what we do know. There does appear to be a developing North American market for 3D CAD, with a recent survey indicating that about 50% of the firms use some form of 3D modeling for about 75% of their projects. However, this does not mean that full 3D CAD is always being used. Our information suggests that AutoDesk accounts for about 75 to 80% of the 3D CAD market, and they are very cautious about any links that do not serve a latent demand. Finally, other system that link CAD to energy simulation are using XML data transfer protocols rather than IFC files, and it is our understanding that the market served by AutoDesk tends in that direction right now. This is a subject that is outside our area of expertise, so please take these comments as suggestions for more intensive market research rather than as definitive findings.
Environmental assessment for commercial buildings: Stakeholder requirements and tool characteristics
Resumo:
The Cooperative Research Centre for Construction Innovation (CRC CI) is a national research, development and implementation centre focused on the needs of the property, design, construction and facility management sectors. Established in 2001 and headquartered at Queensland University of Technology as an unincorporated joint venture under the Australian Government's Cooperative Research Program, the CRC CI is developing key technologies, tools and management systems to improve the effectiveness of the construction industry. The CRC CI is a seven year project funded by a Commonwealth grant and industry, research and other government support. More than 150 researchers and an alliance of 19 leading partner organisations are involved in and support the activities of the CRC CI
Resumo:
Existing widely known environmental assessment models, primarily those for Life Cycle Assessment of manufactured products and buildings, were reviewed to grasp their characteristics, since the past several years have seen a significant increase in interest and research activity in the development of building environmental assessment methods. Each method or tool was assessed under the headings of description, data requirement, end-use, assessment criteria (scale of assessment and scoring/ weighting system)and present status
Resumo:
This paper provides an overview of a new framework for a design stage Building Environmental Assessment (BEA) tool and a discussion of strategic responses to existing tool issues and relative stakeholder requirements that lead to the development of this tool founded on new information and communication technology (ICT) related to developments in 3D CAD technology. After introducing the context of the BEA and some of their team’s new work the authors • Critique current BEA tool theory; • Review previous assessments of stakeholder needs; • Introduce a new framework applied to analyse such tools • Highlight and key results considering illustrative ICT capabilities and • Discuss their potential significance upon BEA tool stakeholders.
Resumo:
Australia has no nationally accepted building products life cycle inventory (LCI) database for use in building Ecologically Sustainable Development (ESD) assessment (BEA) tools. More information about the sustainability of the supply chain is limited by industry’s lack of real capacity to deliver objective information on process and product environmental impact. Recognition of these deficits emerged during compilation of a National LCI database to inform LCADesign, a prototype 3 dimensional object oriented computer aided design (3-D CAD) commercial building design tool. Development of this Australian LCI represents 24 staff years of effort here since 1995. Further development of LCADesign extensions is proposed as being essential to support key applications demanded from a more holistic theoretical framework calling for modules of new building and construction industry tools. A proposed tool, conceptually called LCADetails, is to serve the building product industries own needs as well as that of commercial building design amongst other industries’ prospective needs. In this paper, a proposition is examined that the existing national LCI database should be further expanded to serve Australian building product industries’ needs as well as to provide details for its client-base from a web based portal containing a module of practical supply and procurement applications. Along with improved supply chain assessment services, this proposed portal is envisaged to facilitate industry environmental life cycle improvement assessment and support decision-making to provide accredited data for operational reporting capabilities, load-based reasoning as well as BEA applications. This paper provides an overview of developments to date, including a novel 3-D CAD information and communications technology (ICT) platform for more holistic integration of existing tools for true cost assessment. Further conceptualisation of future prospects, based on a new holistic life cycle assessment framework LCADevelop, considering stakeholder relationships and their need for a range of complementary tools leveraging automated function off such ICT platforms to inform dimensionally defined operations for such as automotive, civil, transport and industrial applications are also explored.
Resumo:
Manufacture, construction and use of buildings and building materials make a significant environmental impact internally (inside the building), locally (neighbourhood) and globally. Life cycle assessment (LCA) methodology is being applied for evaluating the environmental impact of building/or building materials. One of the major applications of LCA is to identify key issues of a product system from cradle to grave. Key issues identified in an LCA lead one to the right direction in assessing the environmental aspects of a product system and help to identify the areas for improvement of the environmental performance of a product as well. The purpose of this paper is to suggest two methods for identifying key issues using an integrated tool (LCADesign), which has been developed to provide a method of determining the best alternative for reducing environmental impacts from a building or building materials, and compare both methods in the case study. This paper assists the designers or marketers related to building or building materials in their decision making by giving information on activities or alternatives which are identified as key issues for environmental impacts.
Resumo:
The ability to assess a commercial building for its impact on the environment at the earliest stage of design is a goal which is achievable by integrating several approaches into a single procedure directly from the 3D CAD representation. Such an approach enables building design professionals to make informed decisions on the environmental impact of building and its alternatives during the design development stage instead of at the post-design stage where options become limited. The indicators of interest are those which relate to consumption of resources and energy, contributions to pollution of air, water and soil, and impacts on the health and wellbeing of people in the built environment as a result of constructing and operating buildings. 3D object-oriented CAD files contain a wealth of building information which can be interrogated for details required for analysis of the performance of a design. The quantities of all components in the building can be automatically obtained from the 3D CAD objects and their constituent materials identified to calculate a complete list of the amounts of all building products such as concrete, steel, timber, plastic etc. When this information is combined with a life cycle inventory database, key internationally recognised environmental indicators can be estimated. Such a fully integrated tool known as LCADesign has been created for automated ecoefficiency assessment of commercial buildings direct from 3D CAD. This paper outlines the key features of LCADesign and its application to environmental assessment of commercial buildings.
Resumo:
Buildings consume resources and energy, contribute to pollution of our air, water and soil, impact the health and well-being of populations and constitute an important part of the built environment in which we live. The ability to assess their design with a view to reducing that impact automatically from their 3D CAD representations enables building design professionals to make informed decisions on the environmental impact of building structures. Contemporary 3D object-oriented CAD files contain a wealth of building information. LCADesign has been designed as a fully integrated approach for automated eco-efficiency assessment of commercial buildings direct from 3D CAD. LCADesign accesses the 3D CAD detail through Industry Foundation Classes (IFCs) - the international standard file format for defining architectural and constructional CAD graphic data as 3D real-world objects - to permit construction professionals to interrogate these intelligent drawing objects for analysis of the performance of a design. The automated take-off provides quantities of all building components whose specific production processes, logistics and raw material inputs, where necessary, are identified to calculate a complete list of quantities for all products such as concrete, steel, timber, plastic etc and combines this information with the life cycle inventory database, to estimate key internationally recognised environmental indicators such as CML, EPS and Eco-indicator 99. This paper outlines the key modules of LCADesign and their role in delivering an automated eco-efficiency assessment for commercial buildings.