37 resultados para 1-NAPHTHYLAMINE OXIDATION

em Queensland University of Technology - ePrints Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the electrocatalytic oxidation of ascorbic acid (AA) in phosphate buffer solution by the immobilized citrate capped gold nanoparticles (AuNPs) on 1,6-hexanedithiol (HDT) modified Au electrode. X-ray photoelectron spectrum (XPS) of HDT suggests that it forms a monolayer on Au surface through one of the two single bondSH groups and the other single bondSH group is pointing away from the electrode surface. The free single bondSH groups of HDT were used to covalently attach colloidal AuNPs. The covalent attachment of AuNPs on HDT monolayer was confirmed from the observed characteristic carboxylate ion stretching modes of citrate attached with AuNPs in the infra-red reflection absorption spectrum (IRRAS) in addition to a higher reductive desorption charges obtained for AuNPs immobilized on HDT modified Au (Au/HDT/AuNPs) electrode in 0.1 M KOH when compared to HDT modified Au (Au/HDT) electrode. The electron transfer reaction of [Fe(CN)6]4−/3− was markedly hindered at the HDT modified Au (Au/HDT) electrode while it was restored with a peak separation of 74 mV after the immobilization of AuNPs on Au/HDT (Au/HDT/AuNPs) electrode indicating a good electronic communication between the immobilized AuNPs and the underlying bulk Au electrode through a HDT monolayer. The Cottrell slope obtained from the potential-step chronoamperometric measurements for the reduction of ferricyanide at Au/HDT/AuNPs was higher than that of bare Au electrode indicating the increased effective surface area of AuNPs modified electrode. The Au/HDT/AuNPs electrode exhibits excellent electrocatalytic activity towards the oxidation of ascorbic acid (AA) by enhancing the oxidation peak current to more than two times with a 210 mV negative shift in the oxidation potential when compared to a bare Au electrode. The standard heterogeneous electron transfer rate constant (ks) calculated for AA oxidation at Au/HDT/AuNPs electrode was 5.4 × 10−3 cm s−1. The oxidation peak of AA at Au/HDT/AuNPs electrode was highly stable upon repeated potential cycling. Linear calibration plot was obtained for AA over the concentration range of 1–110 μM with a correlation coefficient of 0.9950. The detection limit of AA was found to be 1 μM. The common physiological interferents such as glucose, oxalate ions and urea do not show any interference within the detection limit of AA. The selectivity of the AuNPs modified electrode was illustrated by the determination of AA in the presence of uric acid.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inherited genetic traits co-determine the susceptibility of an individual to a toxic chemical. Special emphasis has been put on individual responses to environmental and industrial carcinogens, but other chronic diseases are of increasing interest. Polymorphisms of relevant xenobiotic metabolising enzymes may be used as toxicological susceptibility markers. A growing number of genes encoding enzymes involved in biotransformation of toxicants and in cellular defence against toxicant-induced damage to the cells has been identified and cloned, leading to increased knowledge of allelic variants of genes and genetic defects that may result in a differential susceptibility toward environmental toxicants. "Low penetrating" polymorphisms in metabolism genes tend to be much more common in the population than allelic variants of "high penetrating" cancer genes, and are therefore of considerable importance from a public health point of view. Positive associations between cancer and CYP1A1 alleles, in particular the *2C I462V allele, were found for tissues following the aerodigestive tract. Again, in most cases, the effect of the variant CYP1A1 allele becomes apparent or clearer in connection with the GSTM1 null allele. The CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squameous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has also pointed to interactive effects. Of particular interest for the industrial and environmental field is the isozyme CYP2E1. Several genotypes of this isozyme have been characterised which seem to be associated with different levels of expression of enzyme activity. The acetylator status for NAT2 can be determined by genotyping or by phenotyping. In the pathogenesis of human bladder cancer due to occupational exposure to "classical" aromatic amines (benzidine, 4-aminodiphenyl, 1-naphthylamine) acetylation by NAT2 is regarded as a detoxication step. Interestingly, the underlying European findings of a higher susceptibility of slow acetylators towards aromatic amines are in contrast to findings in Chinese workers occupationally exposed to aromatic amines which points to different mechanisms of susceptibility between European and Chinese populations. Regarding human bladder cancer, the hypothesis has been put forward that genetic polymorphism of GSTM1 might be linked with the occurrence of this tumour type. This supports the hypothesis that exposure to PAH might causally be involved in urothelial cancers. The human polymorphic GST catalysing conjugation of halomethanes, dihalomethanes, ethylene oxide and a number of other industrial compounds could be characterised as a class theta enzyme (GSTT1) by means of molecular biology. "Conjugator" and "non-conjugator" phenotypes are coincident with the presence and absence of the GSTT1 gene. There are wide variations in the frequencies of GSTT1 deletion (GSTT1 *0/0) among different ethnicities. Human phenotyping is facilitated by the GST activity towards methyl bromide or ethylene oxide in erythrocytes which is representative of the metabolic GSTT1 competence of the entire organism. Inter-individual variations in xenobiotic metabolism capacities may be due to polymorphisms of the genes coding for the enzymes themselves or of the genes coding for the receptors or transcription factors which regulate the expression of the enzymes. Also, polymorphisms in several regions of genes may cause altered ligand affinity, transactivation activity or expression levels of the receptor subsequently influencing the expression of the downstream target genes. Studies of individual susceptibility to toxicants and gene-environment interaction are now emerging as an important component of molecular epidemiology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Potenital pathways for the deactivation of hindered amine light stabilisers (HALS) have been investigated by observing reactions of model compounds-based on 4-substituted derivatives of 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO)-with hydroxyl radicals. In these reactions, dilute aqueous suspensions of photocatalytic nanoparticulate titanium dioxide were irradiated with UV light in the presence of water-soluble TEMPO derivatives. Electron spin resonance (ESR) and electrospray ionisation mass-spectrometry (ESI-MS) data were acquired to provide complementary structural elucidation of the odd-and even-electron products of these reactions and both techniques show evidence for the formation of 4-oxo-TEMPO (TEMPONE). TEMPONE formation from the 4-substituted TEMPO compounds is proposed to be initiated by hydrogen abstraction at the 4-position by hydroxyl radical. High-level ab initio calculations reveal a thermodynamic preference for abstraction of this hydrogen but computed activation barriers indicate that, although viable, it is less favoured than hydrogen abstraction from elsewhere on the TEMPO scaffold. If a radical is formed at the 4-position however, calculations elucidate two reaction pathways leading to TEMPONE following combination with either a second hydroxyl radical or dioxygen. An alternate mechanism for conversion of TEMPOL to TEMPONE via an alkoxyl radical intermediate is also considered and found to be competitive with the other pathways. ESI-MS analysis also shows an increased abundance of analogous 4-substituted piperidines during the course of irradiation, suggesting competitive modification at the 1-position to produce a secondary amine. This modification is confirmed by characteristic fragmentation patterns of the ionised piperidines obtained by tandem mass spectrometry. The conclusions describe how reaction at the 4-position could be responsible for the gradual depletion of HALS in pigmented surface coatings and secondly, that modification at nitrogen to form the corresponding secondary amine species may play a greater role in the stabilisation mechanisms of HALS than previously considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a theoretical study of the multiple oxidation states (1+, 0, 1−, and 2−) of a meso,meso-linked diporphyrin, namely bis[10,15,20-triphenylporphyrinatozinc(II)-5-yl]butadiyne (4), using Time-Dependent Density Functional Theory (TDDFT). The origin of electronic transitions of singlet excited states is discussed in comparison to experimental spectra for the corresponding oxidation states of the close analogue bis{10,15,20-tris[3‘,5‘-di-tert-butylphenyl]porphyrinatozinc(II)-5-yl}butadiyne (3). The latter were measured in previous work under in situ spectroelectrochemical conditions. Excitation energies and orbital compositions of the excited states were obtained for these large delocalized aromatic radicals, which are unique examples of organic mixed-valence systems. The radical cations and anions of butadiyne-bridged diporphyrins such as 3 display characteristic electronic absorption bands in the near-IR region, which have been successfully predicted with use of these computational methods. The radicals are clearly of the “fully delocalized” or Class III type. The key spectral features of the neutral and dianionic states were also reproduced, although due to the large size of these molecules, quantitative agreement of energies with observations is not as good in the blue end of the visible region. The TDDFT calculations are largely in accord with a previous empirical model for the spectra, which was based simplistically on one-electron transitions among the eight key frontier orbitals of the C4 (1,4-butadiyne) linked diporphyrins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A technique is described whereby micro-ATR/FTIR imaging can be used to follow polymer degradation reactions in situ in real time. The internal reflection element (IRE) assembly is removed from the ATR objective and polymer is solvent cast directly onto the IRE surface. The polymer is then subjected to degradation conditions and molecular structural changes monitored by periodically replacing the IRE assembly back in the ATR objective and collecting spectra which can be used to construct images. This approach has the benefit that the same part of the sample is always studied, and that contact by pressure which might damage the polymer surface is not required. The technique is demonstrated using the polymer Topas which was degraded by exposure to UVC light in air.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is frequently reported that the actual weight loss achieved through exercise interventions is less than theoretically expected. Amongst other compensatory adjustments that accompany exercise training (e.g., increases in resting metabolic rate and energy intake), a possible cause of the less than expected weight loss is a failure to produce a marked increase in total daily energy expenditure due to a compensatory reduction in non-exercise activity thermogenesis (NEAT). Therefore, there is a need to understand how behaviour is modified in response to exercise interventions. The proposed benefits of exercise training are numerous, including changes to fat oxidation. Given that a diminished capacity to oxidise fat could be a factor in the aetiology of obesity, an exercise training intensity that optimises fat oxidation in overweight/obese individuals would improve impaired fat oxidation, and potentially reduce health risks that are associated with obesity. To improve our understanding of the effectiveness of exercise for weight management, it is important to ensure exercise intensity is appropriately prescribed, and to identify and monitor potential compensatory behavioural changes consequent to exercise training. In line with the gaps in the literature, three studies were performed. The aim of Study 1 was to determine the effect of acute bouts of moderate- and high-intensity walking exercise on NEAT in overweight and obese men. Sixteen participants performed a single bout of either moderate-intensity walking exercise (MIE) or high-intensity walking exercise (HIE) on two separate occasions. The MIE consisted of walking for 60-min on a motorised treadmill at 6 km.h-1. The 60-min HIE session consisted of walking in 5-min intervals at 6 km.h-1 and 10% grade followed by 5-min at 0% grade. NEAT was assessed by accelerometer three days before, on the day of, and three days after the exercise sessions. There was no significant difference in NEAT vector magnitude (counts.min-1) between the pre-exercise period (days 1-3) and the exercise day (day 4) for either protocol. In addition, there was no change in NEAT during the three days following the MIE session, however NEAT increased by 16% on day 7 (post-exercise) compared with the exercise day (P = 0.32). During the post-exercise period following the HIE session, NEAT was increased by 25% on day 7 compared with the exercise day (P = 0.08), and by 30-33% compared with the pre-exercise period (day 1, day 2 and day 3); P = 0.03, 0.03, 0.02, respectively. To conclude, a single bout of either MIE or HIE did not alter NEAT on the exercise day or on the first two days following the exercise session. However, extending the monitoring of NEAT allowed the detection of a 48 hour delay in increased NEAT after performing HIE. A longer-term intervention is needed to determine the effect of accumulated exercise sessions over a week on NEAT. In Study 2, there were two primary aims. The first aim was to test the reliability of a discontinuous incremental exercise protocol (DISCON-FATmax) to identify the workload at which fat oxidation is maximised (FATmax). Ten overweight and obese sedentary male men (mean BMI of 29.5 ¡Ó 4.5 kg/m2 and mean age of 28.0 ¡Ó 5.3 y) participated in this study and performed two identical DISCON-FATmax tests one week apart. Each test consisted of alternate 4-min exercise and 2-min rest intervals on a cycle ergometer. The starting work load of 28 W was increased every 4-min using 14 W increments followed by 2-min rest intervals. When the respiratory exchange ratio was consistently >1.0, the workload was increased by 14 W every 2-min until volitional exhaustion. Fat oxidation was measured by indirect calorimetry. The mean FATmax, ƒtV O2peak, %ƒtV O2peak and %Wmax at which FATmax occurred during the two tests were 0.23 ¡Ó 0.09 and 0.18 ¡Ó 0.08 (g.min-1); 29.7 ¡Ó 7.8 and 28.3 ¡Ó 7.5 (ml.kg-1.min-1); 42.3 ¡Ó 7.2 and 42.6 ¡Ó 10.2 (%ƒtV O2max) and 36.4 ¡Ó 8.5 and 35.4 ¡Ó 10.9 (%), respectively. A paired-samples T-test revealed a significant difference in FATmax (g.min-1) between the tests (t = 2.65, P = 0.03). The mean difference in FATmax was 0.05 (g.min-1) with the 95% confidence interval ranging from 0.01 to 0.18. Paired-samples T-test, however, revealed no significant difference in the workloads (i.e. W) between the tests, t (9) = 0.70, P = 0.4. The intra-class correlation coefficient for FATmax (g.min-1) between the tests was 0.84 (95% confidence interval: 0.36-0.96, P < 0.01). However, Bland-Altman analysis revealed a large disagreement in FATmax (g.min-1) related to W between the two tests; 11 ¡Ó 14 (W) (4.1 ¡Ó 5.3 ƒtV O2peak (%)).These data demonstrate two important phenomena associated with exercise-induced substrate oxidation; firstly, that maximal fat oxidation derived from a discontinuous FATmax protocol differed statistically between repeated tests, and secondly, there was large variability in the workload corresponding with FATmax. The second aim of Study 2 was to test the validity of a DISCON-FATmax protocol by comparing maximal fat oxidation (g.min-1) determined by DISCON-FATmax with fat oxidation (g.min-1) during a continuous exercise protocol using a constant load (CONEX). Ten overweight and obese sedentary males (BMI = 29.5 ¡Ó 4.5 kg/m2; age = 28.0 ¡Ó 4.5 y) with a ƒtV O2max of 29.1 ¡Ó 7.5 ml.kg-1.min-1 performed a DISCON-FATmax test consisting of alternate 4-min exercise and 2-min rest intervals on a cycle ergometer. The 1-h CONEX protocol used the workload from the DISCON-FATmax to determine FATmax. The mean FATmax, ƒtV O2max, %ƒtV O2max and workload at which FATmax occurred during the DISCON-FATmax were 0.23 ¡Ó 0.09 (g.min-1); 29.1 ¡Ó 7.5 (ml.kg-1.min-1); 43.8 ¡Ó 7.3 (%ƒtV O2max) and 58.8 ¡Ó 19.6 (W), respectively. The mean fat oxidation during the 1-h CONEX protocol was 0.19 ¡Ó 0.07 (g.min-1). A paired-samples T-test revealed no significant difference in fat oxidation (g.min-1) between DISCON-FATmax and CONEX, t (9) = 1.85, P = 0.097 (two-tailed). There was also no significant correlation in fat oxidation between the DISCON-FATmax and CONEX (R=0.51, P = 0.14). Bland- Altman analysis revealed a large disagreement in fat oxidation between the DISCONFATmax and CONEX; the upper limit of agreement was 0.13 (g.min-1) and the lower limit of agreement was ¡V0.03 (g.min-1). These data suggest that the CONEX and DISCONFATmax protocols did not elicit different rates of fat oxidation (g.min-1). However, the individual variability in fat oxidation was large, particularly in the DISCON-FATmax test. Further research is needed to ascertain the validity of graded exercise tests for predicting fat oxidation during constant load exercise sessions. The aim of Study 3 was to compare the impact of two different intensities of four weeks of exercise training on fat oxidation, NEAT, and appetite in overweight and obese men. Using a cross-over design 11 participants (BMI = 29 ¡Ó 4 kg/m2; age = 27 ¡Ó 4 y) participated in a training study and were randomly assigned initially to: [1] a lowintensity (45%ƒtV O2max) exercise (LIT) or [2] a high-intensity interval (alternate 30 s at 90%ƒtV O2max followed by 30 s rest) exercise (HIIT) 40-min duration, three times a week. Participants completed four weeks of supervised training and between cross-over had a two week washout period. At baseline and the end of each exercise intervention,ƒtV O2max, fat oxidation, and NEAT were measured. Fat oxidation was determined during a standard 30-min continuous exercise bout at 45%ƒtV O2max. During the steady state exercise expired gases were measured intermittently for 5-min periods and HR was monitored continuously. In each training period, NEAT was measured for seven consecutive days using an accelerometer (RT3) the week before, at week 3 and the week after training. Subjective appetite sensations and food preferences were measured immediately before and after the first exercise session every week for four weeks during both LIT and HIIT. The mean fat oxidation rate during the standard continuous exercise bout at baseline for both LIT and HIIT was 0.14 ¡Ó 0.08 (g.min-1). After four weeks of exercise training, the mean fat oxidation was 0.178 ¡Ó 0.04 and 0.183 ¡Ó 0.04 g.min-1 for LIT and HIIT, respectively. The mean NEAT (counts.min-1) was 45 ¡Ó 18 at baseline, 55 ¡Ó 22 and 44 ¡Ó 16 during training, and 51 ¡Ó 14 and 50 ¡Ó 21 after training for LIT and HIIT, respectively. There was no significant difference in fat oxidation between LIT and HIIT. Moreover, although not statistically significant, there was some evidence to suggest that LIT and HIIT tend to increase fat oxidation during exercise at 45% ƒtV O2max (P = 0.14 and 0.08, respectively). The order of training treatment did not significantly influence changes in fat oxidation, NEAT, and appetite. NEAT (counts.min-1) was not significantly different in the week following training for either LIT or HIIT. Although not statistically significant (P = 0.08), NEAT was 20% lower during week 3 of exercise training in HIIT compared with LIT. Examination of appetite sensations revealed differences in the intensity of hunger, with higher ratings after LIT compared with HIIT. No differences were found in preferences for high-fat sweet foods between LIT and HIIT. In conclusion, the results of this thesis suggest that while fat oxidation during steady state exercise was not affected by the level of exercise intensity, there is strong evidence to suggest that intense exercise could have a debilitative effect on NEAT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The techniques of environmental scanning electron microscopy (ESEM) and Raman microscopy have been used to respectively elucidate the morphological changes and nature of the adsorbed species on silver(I) oxide powder, during methanol oxidation conditions. Heating Ag2O in either water vapour or oxygen resulted firstly in the decomposition of silver(I) oxide to polycrystalline silver at 578 K followed by sintering of the particles at higher temperature. Raman spectroscopy revealed the presence of subsurface oxygen and hydroxyl species in addition to surface hydroxyl groups after interaction with water vapour. Similar species were identified following exposure to oxygen in an ambient atmosphere. This behaviour indicated that the polycrystalline silver formed from Ag2O decomposition was substantially more reactive than silver produced by electrochemical methods. The interaction of water at elevated temperatures subsequent to heating silver(I) oxide in oxygen resulted in a significantly enhanced concentration of subsurface hydroxyl species. The reaction of methanol with Ag2O at high temperatures was interesting in that an inhibition in silver grain growth was noted. Substantial structural modification of the silver(I) oxide material was induced by catalytic etching in a methanol/air mixture. In particular, "pin-hole" formation was observed to occur at temperatures in excess of 773 K, and it was also recorded that these "pin- holes" coalesced to form large-scale defects under typical industrial reaction conditions. Raman spectroscopy revealed that the working surface consisted mainly of subsurface oxygen and surface Ag=O species. The relative lack of sub-surface hydroxyl species suggested that it was the desorption of such moieties which was the cause of the "pin-hole" formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycrystalline silver is used to catalytically oxidise methanol to formaldehyde. This paper reports the results of extensive investigations involving the use of environmental scanning electron microscopy (ESEM) to monitor structural changes in silver during simulated industrial reaction conditions. The interaction of oxygen, nitrogen, and water, either singly or in combination, with a silver catalyst at temperatures up to 973 K resulted in the appearance of a reconstructed silver surface. More spectacular was the effect an oxygen/methanol mixture had on the silver morphology. At a temperature of ca. 713 K pinholes were created in the vicinity of defects as a consequence of subsurface explosions. These holes gradually increased in size and large platelet features were created. Elevation of the catalyst temperature to 843 K facilitated the wholescale oxygen induced restructuring of the entire silver surface. Methanol reacted with subsurface oxygen to produce subsurface hydroxyl species which ultimately formed water in the subsurface layers of silver. The resultant hydrostatic pressure forced the silver surface to adopt a "hill and valley" conformation in order to minimise the surface free energy. Upon approaching typical industrial operating conditions widespread explosions occurred on the catalyst and it was also apparent that the silver surface was extremely mobile under the applied conditions. The interaction of methanol alone with silver resulted in the initial formation of pinholes primarily in the vicinity of defects, due to reaction with oxygen species incorporated in the catalyst during electrochemical synthesis. However, dramatic reduction in the hole concentration with time occurred as all the available oxygen became consumed. A remarkable correlation between formaldehyde production and hole concentration was found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The combined techniques of in situ Raman microscopy and scanning electron microscopy (SEM) have been used to study the selective oxidation of methanol to formaldehyde and the ethene epoxidation reaction over polycrystalline silver catalysts. The nature of the oxygen species formed on silver was found to depend critically upon the exact morphology of the catalyst studied. Bands at 640, 780 and 960 cm-1 were identified only on silver catalysts containing a significant proportion of defects. These peaks were assigned to subsurface oxygen species situated in the vicinity of surface dislocations, AgIII=O sites formed on silver atoms modified by the presence of subsurface oxygen and O2 - species stabilized on subsurface oxygen-modified silver sites, respectively. The selective oxidation of methanol to formaldehyde was determined to occur at defect sites, where reaction of methanol with subsurface oxygen initially produced subsurface OH species (451 cm-1) and adsorbed methoxy species. Two distinct forms of adsorbed ethene were identified on oxidised silver sites. One of these was created on silver sites modified by the interaction of subsurface oxygen species, and the other on silver crystal planes containing a surface coverage of atomic oxygen species. The selective oxidation of ethene to ethylene oxide was achieved by the reaction between ethene adsorbed on modified silver sites and electrophilic AgIII=O species, whereas the combustion reaction was perceived to take place by the reaction of adsorbed ethene with nucleophilic surface atomic oxygen species. Defects were determined to play a critical role in the epoxidation reaction, as these sites allowed the rapid diffusion of oxygen into subsurface positions, and consequently facilitated the formation of the catalytically active AgIII=O sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of oxidation and reduction conditions upon the morphology of polycrystalline silver catalysts has been investigated by means of in situ Fourier-transform infrared (FTIR) spectroscopy. Characterization of the sample was achieved by inspection of the νas(COO) band profile of adsorbed formate, recorded after dosing with formic acid at ambient temperature. Evidence was obtained for the existence of a silver surface reconstructed by the presence of subsurface oxygen in addition to the conventional family of Ag(111) and Ag(110) crystal faces. Oxidation at 773 K facilitated the reconstruction of silver planes due to the formation of subsurface oxygen species. Prolonged oxygen treatment at 773 K also caused particle fragmentation as a consequence of excessive oxygen penetration of the silver catalyst at defect sites. It was also deduced that the presence of oxygen in the gas phase stabilized the growth of silver planes which could form stronger bonds with oxygen. In contrast, high-temperature thermal treatment in vacuum induced significant sintering of the silver catalyst. Reduction at 773 K resulted in substantial quantities of dissolved hydrogen (and probably hydroxy species) in the bulk silver structure. Furthermore, enhanced defect formation in the catalyst was also noted, as evidenced by the increased concentration of formate species associated with oxygen-reconstructed silver faces.