40 resultados para 040107 Meteorology
em Queensland University of Technology - ePrints Archive
Resumo:
Hailstones in wet growth are commonly found in thunderclouds. While the ice-ice relative growth rate mechanism is generally accepted as the most likely cause of thunderstorm electrification, it is uncertain if this mechanism will operate under wet growth conditions because ice crystals are more likely to stick to the wet surface of a hailstone rather than bounce off it. Experiments were carried out in the laboratory to investigate if there was any charge separated when vapor-grown ice crystals bounced off a wet hailstone. A cloud of supercooled droplets, with and without ice crystals, was drawn past a simulated hailstone. In the dry growth regime, the hailstone charged strongly positive when droplets and crystals co-existed in the cloud. With only droplets in the cloud, there was no charging in the dry growth regime. However, as the hailstone attained wet growth, positive charging currents of about 0.5 and 3.5 pA were observed at 12 and 20 m s-1, respectively. We hypothesize that this observed charging was due to the evaporation of melt water. This so called Dinger-Gunn Effect is due to the ejection of negatively charged minute droplets produced by air bubbles bursting at the surface of the melt water. However the charge separated in wet growth was an order of magnitude smaller than that in dry growth and, therefore, we conclude that it is unlikely to play an important role in the electrification of thunderstorms.
Resumo:
The close relationship between rain and lightning is well known. However, there are numerous documented observations of heavy rain accompanied by little or no lightning activity (Williams et al, 1992; Jayaratne, 1993). Kuleshov et al (2002) studied thunderstorm distribution and frequency in Australia and concluded that thunderstorm frequency (as expressed by number of thunder-days) in Australia does not, in general, appear to vary in any consistent way with rainfall. However, thunder-days describe occurrence of thunderstorms as heard by an observer, and therefore could be only proxy data to evaluate actual lightning activity (i.e. number of total or cloud-to-ground flashes). Field experiments have demonstrated a strong increase in lightning activity with convective available potential energy (CAPE). It has also been shown that CAPE increases linearly with potential wet bulb temperature, Tw (Williams et al, 1992). In this study, we examine the relationship between lightning ground flash incidence and the two parameters – surface rainfall and surface wet bulb maximum temperature for selected localities around Australia...
Resumo:
In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (β = 0.15, p-value < 0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (β = −1.03, p-value = 0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention.
Resumo:
We used geographic information systems and a spatial analysis approach to explore the pattern of Ross River virus (RRV) incidence in Brisbane, Australia. Climate, vegetation and socioeconomic data in 2001 were obtained from the Australian Bureau of Meteorology, the Brisbane City Council and the Australian Bureau of Statistics, respectively. Information on the RRV cases was obtained from the Queensland Department of Health. Spatial and multiple negative binomial regression models were used to identify the socioeconomic and environmental determinants of RRV transmission. The results show that RRV activity was primarily concentrated in the northeastern, northwestern, and southeastern regions in Brisbane. Multiple negative binomial regression models showed that the spatial pattern of RRV disease in Brisbane seemed to be determined by a combination of local ecologic, socioeconomic, and environmental factors.
Resumo:
Background: The seasonality of suicide has long been recognised. However, little is known about the relative importance of socio-environmental factors in the occurrence of suicide in different geographical areas. This study examined the association of climate, socioeconomic and demographic factors with suicide in Queensland, Australia, using a spatiotemporal approach. Methods: Seasonal data on suicide, demographic variables and socioeconomic indexes for areas in each Local Government Area (LGA) between 1999 and 2003 were acquired from the Australian Bureau of Statistics. Climate data were supplied by the Australian Bureau of Meteorology. A multivariable generalized estimating equation model was used to examine the impact of socio-environmental factors on suicide. Results: The preliminary data analyses show that far north Queensland had the highest suicide incidence (e.g., Cook and Mornington Shires), while the south-western areas had the lowest incidence (e.g., Barcoo and Bauhinia Shires) in all the seasons. Maximum temperature, unemployment rate, the proportion of Indigenous population and the proportion of population with low individual income were statistically significantly and positively associated with suicide. There were weaker but not significant associations for other variables. Conclusions: Maximum temperature, the proportion of Indigenous population and unemployment rate appeared to be major determinants of suicide at a LGA level in Queensland.
Resumo:
The roles of weather variability and sunspots in the occurrence of cyanobacteria blooms, were investigated using cyanobacteria cell data collected from the Fred Haigh Dam, Queensland, Australia. Time series generalized linear model and classification and regression (CART) model were used in the analysis. Data on notified cell numbers of cyanobacteria and weather variables over the periods 2001 and 2005 were provided by the Australian Department of Natural Resources and Water, and Australian Bureau of Meteorology, respectively. The results indicate that monthly minimum temperature (relative risk [RR]: 1.13, 95% confidence interval [CI]: 1.02-1.25) and rainfall (RR: 1.11; 95% CI: 1.03-1.20) had a positive association, but relative humidity (RR: 0.94; 95% CI: 0.91-0.98) and wind speed (RR:0.90; 95% CI: 0.82-0.98) were negatively associated with the cyanobacterial numbers, after adjustment for seasonality and auto-correlation. The CART model showed that the cyanobacteria numbers were best described by an interaction between minimum temperature, relative humidity, and sunspot numbers. When minimum temperature exceeded 18%C and relative humidity was under 66%, the number of cyanobacterial cells rose by 2.15-fold. We conclude that the weather variability and sunspot activity may affect cyanobacterial blooms in dams.
Resumo:
Suicide has drawn much attention from both the scientific community and the public. Examining the impact of socio-environmental factors on suicide is essential in developing suicide prevention strategies and interventions, because it will provide health authorities with important information for their decision-making. However, previous studies did not examine the impact of socio-environmental factors on suicide using a spatial analysis approach. The purpose of this study was to identify the patterns of suicide and to examine how socio-environmental factors impact on suicide over time and space at the Local Governmental Area (LGA) level in Queensland. The suicide data between 1999 and 2003 were collected from the Australian Bureau of Statistics (ABS). Socio-environmental variables at the LGA level included climate (rainfall, maximum and minimum temperature), Socioeconomic Indexes for Areas (SEIFA) and demographic variables (proportion of Indigenous population, unemployment rate, proportion of population with low income and low education level). Climate data were obtained from Australian Bureau of Meteorology. SEIFA and demographic variables were acquired from ABS. A series of statistical and geographical information system (GIS) approaches were applied in the analysis. This study included two stages. The first stage used average annual data to view the spatial pattern of suicide and to examine the association between socio-environmental factors and suicide over space. The second stage examined the spatiotemporal pattern of suicide and assessed the socio-environmental determinants of suicide, using more detailed seasonal data. In this research, 2,445 suicide cases were included, with 1,957 males (80.0%) and 488 females (20.0%). In the first stage, we examined the spatial pattern and the determinants of suicide using 5-year aggregated data. Spearman correlations were used to assess associations between variables. Then a Poisson regression model was applied in the multivariable analysis, as the occurrence of suicide is a small probability event and this model fitted the data quite well. Suicide mortality varied across LGAs and was associated with a range of socio-environmental factors. The multivariable analysis showed that maximum temperature was significantly and positively associated with male suicide (relative risk [RR] = 1.03, 95% CI: 1.00 to 1.07). Higher proportion of Indigenous population was accompanied with more suicide in male population (male: RR = 1.02, 95% CI: 1.01 to 1.03). There was a positive association between unemployment rate and suicide in both genders (male: RR = 1.04, 95% CI: 1.02 to 1.06; female: RR = 1.07, 95% CI: 1.00 to 1.16). No significant association was observed for rainfall, minimum temperature, SEIFA, proportion of population with low individual income and low educational attainment. In the second stage of this study, we undertook a preliminary spatiotemporal analysis of suicide using seasonal data. Firstly, we assessed the interrelations between variables. Secondly, a generalised estimating equations (GEE) model was used to examine the socio-environmental impact on suicide over time and space, as this model is well suited to analyze repeated longitudinal data (e.g., seasonal suicide mortality in a certain LGA) and it fitted the data better than other models (e.g., Poisson model). The suicide pattern varied with season and LGA. The north of Queensland had the highest suicide mortality rate in all the seasons, while there was no suicide case occurred in the southwest. Northwest had consistently higher suicide mortality in spring, autumn and winter. In other areas, suicide mortality varied between seasons. This analysis showed that maximum temperature was positively associated with suicide among male population (RR = 1.24, 95% CI: 1.04 to 1.47) and total population (RR = 1.15, 95% CI: 1.00 to 1.32). Higher proportion of Indigenous population was accompanied with more suicide among total population (RR = 1.16, 95% CI: 1.13 to 1.19) and by gender (male: RR = 1.07, 95% CI: 1.01 to 1.13; female: RR = 1.23, 95% CI: 1.03 to 1.48). Unemployment rate was positively associated with total (RR = 1.40, 95% CI: 1.24 to 1.59) and female (RR=1.09, 95% CI: 1.01 to 1.18) suicide. There was also a positive association between proportion of population with low individual income and suicide in total (RR = 1.28, 95% CI: 1.10 to 1.48) and male (RR = 1.45, 95% CI: 1.23 to 1.72) population. Rainfall was only positively associated with suicide in total population (RR = 1.11, 95% CI: 1.04 to 1.19). There was no significant association for rainfall, minimum temperature, SEIFA, proportion of population with low educational attainment. The second stage is the extension of the first stage. Different spatial scales of dataset were used between the two stages (i.e., mean yearly data in the first stage, and seasonal data in the second stage), but the results are generally consistent with each other. Compared with other studies, this research explored the variety of the impact of a wide range of socio-environmental factors on suicide in different geographical units. Maximum temperature, proportion of Indigenous population, unemployment rate and proportion of population with low individual income were among the major determinants of suicide in Queensland. However, the influence from other factors (e.g. socio-culture background, alcohol and drug use) influencing suicide cannot be ignored. An in-depth understanding of these factors is vital in planning and implementing suicide prevention strategies. Five recommendations for future research are derived from this study: (1) It is vital to acquire detailed personal information on each suicide case and relevant information among the population in assessing the key socio-environmental determinants of suicide; (2) Bayesian model could be applied to compare mortality rates and their socio-environmental determinants across LGAs in future research; (3) In the LGAs with warm weather, high proportion of Indigenous population and/or unemployment rate, concerted efforts need to be made to control and prevent suicide and other mental health problems; (4) The current surveillance, forecasting and early warning system needs to be strengthened, to trace the climate and socioeconomic change over time and space and its impact on population health; (5) It is necessary to evaluate and improve the facilities of mental health care, psychological consultation, suicide prevention and control programs; especially in the areas with low socio-economic status, high unemployment rate, extreme weather events and natural disasters.
Resumo:
Since its launch in 2001, the Creative Commons open content licensing initiative has received both praise and censure. While some have touted it as a major step towards removing the burdens copyright law imposes on creativity and innovation in the digital age, others have argued that it robs artists of their rightful income. This paper aims to provide a brief overview and analysis of the practical application of the Creative Commons licences five years after their launch. It looks at how the Creative Commons licences are being used and who is using them, and attempts to identify likely motivations for doing so. By identifying trends in how this licence use has changed over time, it also attempts to rebut arguments that Creative Commons is a movement of academics and hobbyists, and has no value for traditional organisations or working artists.
Resumo:
Background It remains unclear over whether it is possible to develop an epidemic forecasting model for transmission of dengue fever in Queensland, Australia. Objectives To examine the potential impact of El Niño/Southern Oscillation on the transmission of dengue fever in Queensland, Australia and explore the possibility of developing a forecast model of dengue fever. Methods Data on the Southern Oscillation Index (SOI), an indicator of El Niño/Southern Oscillation activity, were obtained from the Australian Bureau of Meteorology. Numbers of dengue fever cases notified and the numbers of postcode areas with dengue fever cases between January 1993 and December 2005 were obtained from the Queensland Health and relevant population data were obtained from the Australia Bureau of Statistics. A multivariate Seasonal Auto-regressive Integrated Moving Average model was developed and validated by dividing the data file into two datasets: the data from January 1993 to December 2003 were used to construct a model and those from January 2004 to December 2005 were used to validate it. Results A decrease in the average SOI (ie, warmer conditions) during the preceding 3–12 months was significantly associated with an increase in the monthly numbers of postcode areas with dengue fever cases (β=−0.038; p = 0.019). Predicted values from the Seasonal Auto-regressive Integrated Moving Average model were consistent with the observed values in the validation dataset (root-mean-square percentage error: 1.93%). Conclusions Climate variability is directly and/or indirectly associated with dengue transmission and the development of an SOI-based epidemic forecasting system is possible for dengue fever in Queensland, Australia.
Resumo:
The paper examines whether there was an excess of deaths and the relative role of temperature and ozone in a heatwave during 7–26 February 2004 in Brisbane, Australia, a subtropical city accustomed to warm weather. The data on daily counts of deaths from cardiovascular disease and non-external causes, meteorological conditions, and air pollution in Brisbane from 1 January 2001 to 31 October 2004 were supplied by the Australian Bureau of Statistics, Australian Bureau of Meteorology, and Queensland Environmental Protection Agency, respectively. The relationship between temperature and mortality was analysed using a Poisson time series regression model with smoothing splines to control for nonlinear effects of confounding factors. The highest temperature recorded in the 2004 heatwave was 42°C compared with the highest recorded temperature of 34°C during the same periods of 2001–2003. There was a significant relationship between exposure to heat and excess deaths in the 2004 heatwave estimated increase in non-external deaths: 75 [(95% confidence interval, CI: 11–138; cardiovascular deaths: 41 (95% CI: −2 to 84)]. There was no apparent evidence of substantial short-term mortality displacement. The excess deaths were mainly attributed to temperature but exposure to ozone also contributed to these deaths.
Resumo:
Along with their essential role in electricity transmission and distribution, some powerlines also generate large concentrations of corona ions. This study aimed at comprehensive investigation of corona ions, vertical dc e-field, ambient aerosol particle charge and particle number concentration levels in the proximity of some high/sub-transmission voltage powerlines. The influence of meteorology on the instantaneous value of these parameters, and the possible existence of links or associations between the parameters measured were also statistically investigated. The presence of positive and negative polarities of corona ions was associated with variation in the mean vertical dc e-field, ambient ion and particle charge concentration level. Though these variations increased with wind speed, their values also decreased with distance from the powerlines. Predominately positive polarities of ions were recorded up to a distance of 150 m (with the maximum values recorded 50 m downwind of the powerlines). At 200 m from the source, negative ions predominated. Particle number concentration levels however remained relatively constant (103 particle cm-3) irrespective of the sampling site and distance from the powerlines. Meteorological factors of temperature, humidity and wind direction showed no influence on the electrical parameters measured. The study also discovered that e-field measurements were not necessarily a true representation of the ground-level ambient ion/particle charge concentrations.
Resumo:
This research assesses the potential impact of weekly weather variability on the incidence of cryptosporidiosis disease using time series zero-inflated Poisson (ZIP) and classification and regression tree (CART) models. Data on weather variables, notified cryptosporidiosis cases and population size in Brisbane were supplied by the Australian Bureau of Meteorology, Queensland Department of Health, and Australian Bureau of Statistics, respectively. Both time series ZIP and CART models show a clear association between weather variables (maximum temperature, relative humidity, rainfall and wind speed) and cryptosporidiosis disease. The time series CART models indicated that, when weekly maximum temperature exceeded 31°C and relative humidity was less than 63%, the relative risk of cryptosporidiosis rose by 13.64 (expected morbidity: 39.4; 95% confidence interval: 30.9–47.9). These findings may have applications as a decision support tool in planning disease control and risk management programs for cryptosporidiosis disease.
Resumo:
Background: The transmission of hemorrhagic fever with renal syndrome (HFRS) is influenced by climatic variables. However, few studies have examined the quantitative relationship between climate variation and HFRS transmission. ---------- Objective: We examined the potential impact of climate variability on HFRS transmission and developed climate-based forecasting models for HFRS in northeastern China. ---------- Methods: We obtained data on monthly counts of reported HFRS cases in Elunchun and Molidawahaner counties for 1997–2007 from the Inner Mongolia Center for Disease Control and Prevention and climate data from the Chinese Bureau of Meteorology. Cross-correlations assessed crude associations between climate variables, including rainfall, land surface temperature (LST), relative humidity (RH), and the multivariate El Niño Southern Oscillation (ENSO) index (MEI) and monthly HFRS cases over a range of lags. We used time-series Poisson regression models to examine the independent contribution of climatic variables to HFRS transmission. ----------- Results: Cross-correlation analyses showed that rainfall, LST, RH, and MEI were significantly associated with monthly HFRS cases with lags of 3–5 months in both study areas. The results of Poisson regression indicated that after controlling for the autocorrelation, seasonality, and long-term trend, rainfall, LST, RH, and MEI with lags of 3–5 months were associated with HFRS in both study areas. The final model had good accuracy in forecasting the occurrence of HFRS. ---------- Conclusions: Climate variability plays a significant role in HFRS transmission in northeastern China. The model developed in this study has implications for HFRS control and prevention.
Resumo:
Background: It remains unclear whether it is possible to develop a spatiotemporal epidemic prediction model for cryptosporidiosis disease. This paper examined the impact of social economic and weather factors on cryptosporidiosis and explored the possibility of developing such a model using social economic and weather data in Queensland, Australia. ----- ----- Methods: Data on weather variables, notified cryptosporidiosis cases and social economic factors in Queensland were supplied by the Australian Bureau of Meteorology, Queensland Department of Health, and Australian Bureau of Statistics, respectively. Three-stage spatiotemporal classification and regression tree (CART) models were developed to examine the association between social economic and weather factors and monthly incidence of cryptosporidiosis in Queensland, Australia. The spatiotemporal CART model was used for predicting the outbreak of cryptosporidiosis in Queensland, Australia. ----- ----- Results: The results of the classification tree model (with incidence rates defined as binary presence/absence) showed that there was an 87% chance of an occurrence of cryptosporidiosis in a local government area (LGA) if the socio-economic index for the area (SEIFA) exceeded 1021, while the results of regression tree model (based on non-zero incidence rates) show when SEIFA was between 892 and 945, and temperature exceeded 32°C, the relative risk (RR) of cryptosporidiosis was 3.9 (mean morbidity: 390.6/100,000, standard deviation (SD): 310.5), compared to monthly average incidence of cryptosporidiosis. When SEIFA was less than 892 the RR of cryptosporidiosis was 4.3 (mean morbidity: 426.8/100,000, SD: 319.2). A prediction map for the cryptosporidiosis outbreak was made according to the outputs of spatiotemporal CART models. ----- ----- Conclusions: The results of this study suggest that spatiotemporal CART models based on social economic and weather variables can be used for predicting the outbreak of cryptosporidiosis in Queensland, Australia.