217 resultados para wound dehiscence


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a hierarchical nano/microfibrous chitosan/collagen scaffold that approximates structural and functional attributes of native extracellular matrix (ECM), has been developed for applicability in skin tissue engineering. Scaffolds were produced by electrospinning of chitosan followed by imbibing of collagen solution, freeze-drying and subsequent cross-linking of two polymers. Scanning electron microscopy showed formation of layered scaffolds with nano/microfibrous architechture. Physico-chemical properties of scaffolds including tensile strength, swelling behavior and biodegradability were found satisfactory for intended application. 3T3 fibroblasts and HaCaT keratinocytes showed good in vitro cellular response on scaffolds thereby indicating the matrices′ cytocompatible nature. Scaffolds tested in an ex vivo human skin equivalent (HSE) wound model, as a preliminary alternative to animal testing, showed keratinocyte migration and wound re-epithelization — a pre-requisite for healing and regeneration. Taken together, the herein proposed chitosan/collagen scaffold, shows good potential for skin tissue engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs) are proteolytic enzymes important to wound healing. In non-healing wounds, it has been suggested that MMP levels become dysfunctional, hence it is of great interest to develop sensors to detect MMP biomarkers. This study presents the development of a label-free optical MMP biosensor based on a functionalised porous silicon (pSi) thin film. The biosensor is fabricated by immobilising a peptidomimetic MMP inhibitor in the porous layer using hydrosilylation followed by amide coupling. The binding of MMP to the immobilised inhibitor translates into a change of effective optical thickness (EOT) over the time. We investigate the effect of surface functionalisation on the stability of pSi surface and evaluate the sensing performance. We successfully demonstrate MMP detection in buffer solution and human wound fluid at physiologically relevant concentrations. This biosensor may find application as a point-of-care device that is prognostic of the healing trajectory of chronic wounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrostatic spinning or electrospinning is a fiber spinning technique driven by a high-voltage electric field that produces fibers with diameters in a submicrometer to nanometer range.1 Nanofibers are typical one-dimensional colloidal objects with an increased tensile strength, whose length can achieve a few kilometers and the specific surface area can be 100 m2 g–1 or higher.2 Nano- and microfibers from biocompatible polymers and biopolymers have received much attention in medical applications3 including biomedical structural elements (scaffolding used in tissue engineering,2,4–6 wound dressing,7 artificial organs and vascular grafts8), drug and vaccine delivery,9–11 protective shields in speciality fabrics, multifunctional membranes, etc. Other applications concern superhydrophobic coatings,12 encapsulation of solid materials,13 filter media for submicron particles in separation industry, composite reinforcement and structures for nano-electronic machines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patients presenting for knee replacement on warfarin for medical reasons often require higher levels of anticoagulation peri-operatively than primary thromboprophylaxis and may require bridging therapy with heparin. We performed a retrospective case control study on 149 consecutive primary knee arthroplasty patients to investigate whether anti-coagulation affected short-term outcomes. Specific outcome measures indicated significant increases in prolonged wound drainage (26.8% of cases vs 7.3% of controls, p<0.001); superficial infection (16.8% vs 3.3%, p<0.001); deep infection (6.0% vs 0%, p<0.001); return-to-theatre for washout (4.7% vs 0.7%, p=0.004); and revision (4.7% vs 0.3%, p=0.001). Management of patients on long-term warfarin therapy following TKR is particularly challenging, as the surgeon must balance risk of thromboembolism against post-operative complications on an individual patient basis in order to optimise outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell migration is fundamental to many different physiological processes including embryonic development, inflammation and wound healing. Given the range and importance cell migration plays a number of assays have been developed to measure different aspects of cell migration. Here we describe two different methods to analyze cell migration. The first method analyzes the migration of fluorescently tagged cells using Boyden chambers and FACs and the second looks at migration properties using time-lapse microscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most mathematical models of collective cell spreading make the standard assumption that the cell diffusivity and cell proliferation rate are constants that do not vary across the cell population. Here we present a combined experimental and mathematical modeling study which aims to investigate how differences in the cell diffusivity and cell proliferation rate amongst a population of cells can impact the collective behavior of the population. We present data from a three–dimensional transwell migration assay which suggests that the cell diffusivity of some groups of cells within the population can be as much as three times higher than the cell diffusivity of other groups of cells within the population. Using this information, we explore the consequences of explicitly representing this variability in a mathematical model of a scratch assay where we treat the total population of cells as two, possibly distinct, subpopulations. Our results show that when we make the standard assumption that all cells within the population behave identically we observe the formation of moving fronts of cells where both subpopulations are well–mixed and indistinguishable. In contrast, when we consider the same system where the two subpopulations are distinct, we observe a very different outcome where the spreading population becomes spatially organized with the more motile subpopulation dominating at the leading edge while the less motile subpopulation is practically absent from the leading edge. These modeling predictions are consistent with previous experimental observations and suggest that standard mathematical approaches, where we treat the cell diffusivity and cell proliferation rate as constants, might not be appropriate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell-to-cell adhesion is an important aspect of malignant spreading that is often observed in images from the experimental cell biology literature. Since cell-to-cell adhesion plays an important role in controlling the movement of individual malignant cells, it is likely that cell-to-cell adhesion also influences the spatial spreading of populations of such cells. Therefore, it is important for us to develop biologically realistic simulation tools that can mimic the key features of such collective spreading processes to improve our understanding of how cell-to-cell adhesion influences the spreading of cell populations. Previous models of collective cell spreading with adhesion have used lattice-based random walk frameworks which may lead to unrealistic results, since the agents in the random walk simulations always move across an artificial underlying lattice structure. This is particularly problematic in high-density regions where it is clear that agents in the random walk align along the underlying lattice, whereas no such regular alignment is ever observed experimentally. To address these limitations, we present a lattice-free model of collective cell migration that explicitly incorporates crowding and adhesion. We derive a partial differential equation description of the discrete process and show that averaged simulation results compare very well with numerical solutions of the partial differential equation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Foot ulcers are a leading cause of avoidable hospital admissions and lower extremity amputations. However, large clinical studies describing foot ulcer presentations in the ambulatory setting are limited. The aim of this descriptive observational paper is to report the characteristics of ambulatory foot ulcer patients managed across 13 of 17 Queensland Health & Hospital Services. Methods Data on all foot ulcer patients registered with a Queensland High Risk Foot Form (QHRFF) was collected at their first consult in 2012. Data is automatically extracted from each QHRFF into a Queensland high risk foot database. Descriptive statistics display age, sex, ulcer types and co-morbidities. Statewide clinical indicators of foot ulcer management are also reported. Results Overall, 2,034 people presented with a foot ulcer in 2012. Mean age was 63(±14) years and 67.8% were male. Co-morbidities included 85% had diabetes, 49.7% hypertension, 39.2% dyslipidaemia, 25.6% cardiovascular disease, 13.7% kidney disease and 12.2% smoking. Foot ulcer types included 51.6% neuropathic, 17.8% neuro-ischaemic, 7.2% ischaemic, 6.6% post-surgical and 16.8% other; whilst 31% were infected. Clinical indicator results revealed 98% had their wound categorised, 51% received non-removable offloading, median ulcer healing time was 6-weeks and 37% had ulcer recurrence. Conclusion This paper details the largest foot ulcer database reported in Australia. People presenting with foot ulcers appear predominantly older, male with several co-morbidities. Encouragingly it appears most patients are receiving best practice care. These results may be a factor in the significant reduction of Queensland diabetes foot-related hospitalisations and amputations recently reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Significance: Chronic wounds represent a major burden on global healthcare systems and reduce the quality of life of those affected. Significant advances have been made in our understanding of the biochemistry of wound healing progression. However, knowledge regarding the specific molecular processes influencing chronic wound formation and persistence remains limited. Recent Advances: Generally, healing of acute wounds begins with hemostasis and the deposition of a plasma-derived provisional matrix into the wound. The deposition of plasma matrix proteins is known to occur around the microvasculature of the lower limb as a result of venous insufficiency. This appears to alter limb cutaneous tissue physiology and consequently drives the tissue into a ‘preconditioned’ state that negatively influences the response to wounding. Critical Issues: Processes, such as oxygen and nutrient suppression, edema, inflammatory cell trapping/extravasation, diffuse inflammation, and tissue necrosis are thought to contribute to the advent of a chronic wound. Healing of the wound then becomes difficult in the context of an internally injured limb. Thus, interventions and therapies for promoting healing of the limb is a growing area of interest. For venous ulcers, treatment using compression bandaging encourages venous return and improves healing processes within the limb, critically however, once treatment concludes ulcers often reoccur. Future Directions: Improved understanding of the composition and role of pericapillary matrix deposits in facilitating internal limb injury and subsequent development of chronic wounds will be critical for informing and enhancing current best practice therapies and preventative action in the wound care field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transport through crowded environments is often classified as anomalous, rather than classical, Fickian diffusion. Several studies have sought to describe such transport processes using either a continuous time random walk or fractional order differential equation. For both these models the transport is characterized by a parameter α, where α = 1 is associated with Fickian diffusion and α < 1 is associated with anomalous subdiffusion. Here, we simulate a single agent migrating through a crowded environment populated by impenetrable, immobile obstacles and estimate α from mean squared displacement data. We also simulate the transport of a population of such agents through a similar crowded environment and match averaged agent density profiles to the solution of a related fractional order differential equation to obtain an alternative estimate of α. We examine the relationship between our estimate of α and the properties of the obstacle field for both a single agent and a population of agents; we show that in both cases, α decreases as the obstacle density increases, and that the rate of decrease is greater for smaller obstacles. Our work suggests that it may be inappropriate to model transport through a crowded environment using widely reported approaches including power laws to describe the mean squared displacement and fractional order differential equations to represent the averaged agent density profiles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dermal wound healing is a biochemical and cellular process critical to life. While the majority of the population will only ever experience successful wound healing outcomes, some 1-3 % of those aged over 65 years will experience wound healing delay or perpetuation. These hard-to-heal wounds are comprised of degraded and dysfunctional extracellular matrix, yet the integrity of this structure is critical in the processes of normal wound healing. As such, extracellular matrix replacements have been devised that can replace dysfunctional extracellular matrix in hard-to-heal wounds with the aim of restoring normal wound healing processes. Here we evaluated a novel synthetic matrix protein for its ability to act as an acellular scaffold that can replace dysfunctional extracellular matrix. In this regard the synthetic protein demonstrated an ability to rapidly adsorb to the dermal surface, permit cell attachment and facilitate the cellular functions essential to wound healing. When applied to deep partial thickness wounds in a porcine animal model the matrix protein also demonstrated the ability to reduce wound duration. These data provide evidence that the synthetic matrix protein has the ability to function as an acellular scaffold for wound healing purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hard-to-heal leg ulcers are a major cause of morbidity in the elderly population. Despite improvements in wound care, some wounds will not heal and they present a significant challenge for patients and health care providers. A multi-centre cohort study was conducted to evaluate the effectiveness and safety of a synthetic, extracellular matrix protein as an adjunct to standard care in the treatment of hard-to-heal venous or mixed leg ulcers. Primary effectiveness criteria were (i) reduction in wound size evaluated by percentage change in wound area and (ii) healing assessed by number of patients healed by end of the 12 week study. Pain reduction was assessed as a secondary effectiveness criteria using VAS. A total of 45 patients completed the study and no difference was observed between cohorts for treatment frequency. Healing was achieved in 35·6% and wound size decreased in 93·3% of patients. Median wound area percentage reduction was 70·8%. Over 50% of patients reported pain on first visit and 87·0% of these reported no pain at the end of the study. Median time to first reporting of no pain was 14 days after treatment initiation. The authors consider the extracellular synthetic matrix protein an effective and safe adjunct to standard care in the treatment of hard-to-heal leg ulcers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION An important treatment goal for burn wounds is to promote early wound closure. This study identifies factors associated with delayed re-epithelialization following pediatric burn. METHODS Data were collected from August 2011 to August 2012, at a pediatric tertiary burn center. A total of 106 burn wounds were analyzed from 77 participants aged 4-12 years. Percentage of wound re-epithelialization at each dressing change was calculated using Visitrak. Mixed effect regression analysis was performed to identify the demographic factors, wound and clinical characteristics associated with delayed re-epithelialization. RESULTS Burn depth determined by laser Doppler imaging, ethnicity, pain scores, total body surface area (TBSA), mechanism of injury and days taken to present to the burn center were significant predictors of delayed re-epithelialization, accounting for 69% of variance. Flame burns delayed re-epithelialization by 39% compared to all other mechanisms (p=0.003). When initial presentation to the burn center was on day 5, burns took an average of 42% longer to re-epithelialize, compared to those who presented on day 2 post burn (p<0.000). Re-epithelialization was delayed by 14% when pain scores were reported as 10 (on the FPS-R), compared to 4 on the first dressing change (p=0.015) for children who did not receive specialized preparation/distraction intervention. A larger TBSA was also a predictor of delayed re-epithelialization (p=0.030). Darker skin complexion re-epithelialized 25% faster than lighter skin complexion (p=0.001). CONCLUSIONS Burn depth, mechanism of injury and TBSA are always considered when developing the treatment and surgical management plan for patients with burns. This study identifies other factors influencing re-epithelialization, which can be controlled by the treating team, such as effective pain management and rapid referral to a specialized burn center, to achieve optimal outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The relationships between pain, stress and anxiety, and their effect on burn wound re-epithelialization have not been well explored to-date. The aim of this study was to investigate the effect of the Ditto (a hand-held electronic medical device providing procedural preparation and distraction) intervention on re-epithelialization rates in acute pediatric burns. METHODS/DESIGN: From August 2011 to August 2012, children (4-12 years) with an acute burn presenting to the Royal Children's Hospital, Brisbane, Australia fulfilled the study requirements and were randomized to [1] Ditto intervention or [2] standard practice. Burn re-epithelialization, pain intensity, anxiety and stress measures were obtained at every dressing change until complete wound re-epithelialization. RESULTS: One hundred and seventeen children were randomized and 75 children were analyzed (n=40 standard group; n=35 Ditto group). Inability to predict wound management resulted in 42 participants no longer meeting the eligibility criteria. Wounds in the Ditto intervention group re-epithelialized faster than the standard practice group (-2.14 days (CI: -4.38 to 0.10), p-value=0.061), and significantly faster when analyses were adjusted for mean burn depth (-2.26 days (CI: -4.48 to -0.04), p-value=0.046). Following procedural preparation at the first change of dressing, the Ditto group reported lower pain intensity scores (-0.64 (CI: -1.28, 0.01) p=0.052) and lower anxiety ratings (-1.79 (CI: -3.59, 0.01) p=0.051). At the second and third dressing removals average pain (FPS-R and FLACC) and anxiety scores (VAS-A) were at least one point lower when Ditto intervention was received. CONCLUSIONS: The Ditto procedural preparation and distraction device is a useful tool alongside pharmacological intervention to improve the rate of burn re-epithelialization and manage pain and anxiety during burn wound care procedures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Burns and their associated wound care procedures evoke significant stress and anxiety, particularly for children. Little is known about the body's physiological stress reactions throughout the stages of re-epithelialization following an acute burn injury. Previously, serum and urinary cortisol have been used to measure stress in burn patients, however these measures are not suitable for a pediatric burn outpatient setting. AIM To assess the sensitivity of salivary cortisol and sAA in detecting stress during acute burn wound care procedures and to investigate the body's physiological stress reactions throughout burn re-epithelialization. METHODS Seventy-seven participants aged four to thirteen years who presented with an acute burn injury to the burn center at the Royal Children's Hospital, Brisbane, Australia, were recruited between August 2011 and August 2012. RESULTS Both biomarkers were responsive to the stress of burn wound care procedures. sAA levels were on average 50.2U/ml higher (p<0.001) at 10min post-dressing removal compared to baseline levels. Salivary cortisol levels showed a blunted effect with average levels at ten minutes post dressing removal decreasing by 0.54nmol/L (p<0.001) compared to baseline levels. sAA levels were associated with pain (p=0.021), no medication (p=0.047) and Child Trauma Screening Questionnaire scores at three months post re-epithelialization (p=0.008). Similarly, salivary cortisol was associated with no medication (p<0.001), pain scores (p=0.045) and total body surface area of the burn (p=0.010). CONCLUSION Factors which support the use of sAA over salivary cortisol to assess stress during morning acute burn wound care procedures include; sensitivity, morning clinic times relative to cortisol's diurnal peaks, and relative cost.