165 resultados para vector optimization
Resumo:
Modulation and control of a cascade multilevel inverter, which has a high potential in future wind generation applications, are presented. The inverter is a combination of a high power, three level “bulk inverter” and a low power “conditioning inverter”. To minimize switching losses, the bulk inverter operates at a low frequency producing square wave outputs while high frequency conditioning inverter is used to suppress harmonic content produced by the bulk inverter output. This paper proposes an improved Space Vector Modulation (SVM) algorithm and a neutral point potential balancing technique for the inverter. Furthermore, a maximum power tracking controller for the Permanent Magnet Synchronous Generator (PMSG) is described in detail. The proposed SVM technique eliminates most of the computational burdens on the digital controller and renders a greater controllability under varying DC-link voltage conditions. The DC-link capacitor voltage balancing of both bulk and conditioning inverters is carried out using Redundant State Selection (RSS) method and is explained in detail. Experimental results are presented to verify the proposed modulation and control techniques.
Resumo:
Complex bone contour and anatomical variations between individual bones complicate the process of deriving an implant shape that fits majority of the population. This thesis proposes an automatic fitting method for anatomically-precontoured plates based on clinical requirements, and investigated if 100% anatomical fit for a group of bone is achievable through manual bending of one plate shape. It was found that, for the plate used, 100% fit is impossible to achieve through manual bending alone. Rather, newly-developed shapes are also required to obtain anatomical fit in areas with more complex bone contour.
Resumo:
This PhD research has provided novel solutions to three major challenges which have prevented the wide spread deployment of speaker recognition technology: (1) combating enrolment/ verification mismatch, (2) reducing the large amount of development and training data that is required and (3) reducing the duration of speech required to verify a speaker. A range of applications of speaker recognition technology from forensics in criminal investigations to secure access in banking will benefit from the research outcomes.
Resumo:
Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. HRV analysis is an important tool to observe the heart’s ability to respond to normal regulatory impulses that affect its rhythm. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. A computer-based arrhythmia detection system of cardiac states is very useful in diagnostics and disease management. In this work, we studied the identification of the HRV signals using features derived from HOS. These features were fed to the support vector machine (SVM) for classification. Our proposed system can classify the normal and other four classes of arrhythmia with an average accuracy of more than 85%.
Resumo:
Calls from 14 species of bat were classified to genus and species using discriminant function analysis (DFA), support vector machines (SVM) and ensembles of neural networks (ENN). Both SVMs and ENNs outperformed DFA for every species while ENNs (mean identification rate – 97%) consistently outperformed SVMs (mean identification rate – 87%). Correct classification rates produced by the ENNs varied from 91% to 100%; calls from six species were correctly identified with 100% accuracy. Calls from the five species of Myotis, a genus whose species are considered difficult to distinguish acoustically, had correct identification rates that varied from 91 – 100%. Five parameters were most important for classifying calls correctly while seven others contributed little to classification performance.
Resumo:
While the philosophical motivation behind Civil Infrastructure Management Systems is to achieve optimal level of service at a minimum cost, the allocation of scarce resources among competing alternatives is still a matter of debate. It appears to be widely accepted that results from tradeoff analysis can be measured by the degree of accomplishment of the objectives. Road management systems not only deal with different asset types but also with conflicting objectives. This paper presents a case study of lifecycle optimization with tradeoff analysis for a road corridor in New Brunswick. Objectives of the study included condition of bridge and roads and road safety. A road safety index was created based on potential for improvement. Road condition was based on roughness, rutting and cracking. Initial results show lack of sustainability in bridge performance. Therefore, bridges where broken by components: deck, superstructure and substructure. Visual inspections, in addition to construction age of each bridge, were combined to generate a surrogate apparent age. Two life cycle analysis were conducted; one aimed to minimize overall cost while achieving sustainable results and another one purely for optimization. -used to identify required levels of budget. Such analyses were used to identify the minimum required budget and to demonstrate that with the same amount of money it was possible to achieve better levels of performance. Dominance and performance driven criteria were combined to identify and select an optimal result. It was found that achievement of optimally sustained results is conditioned by the availability of treatments for all asset classes at across their life spans. For the case study a disaggregated bridge condition index was introduced to the original algorithm to attempt to achieve sustainability in all bridges components, however lack of early stage treatments for substructures produce declining trends for such a component.
Resumo:
This paper proposes a highly reliable fault diagnosis approach for low-speed bearings. The proposed approach first extracts wavelet-based fault features that represent diverse symptoms of multiple low-speed bearing defects. The most useful fault features for diagnosis are then selected by utilizing a genetic algorithm (GA)-based kernel discriminative feature analysis cooperating with one-against-all multicategory support vector machines (OAA MCSVMs). Finally, each support vector machine is individually trained with its own feature vector that includes the most discriminative fault features, offering the highest classification performance. In this study, the effectiveness of the proposed GA-based kernel discriminative feature analysis and the classification ability of individually trained OAA MCSVMs are addressed in terms of average classification accuracy. In addition, the proposedGA- based kernel discriminative feature analysis is compared with four other state-of-the-art feature analysis approaches. Experimental results indicate that the proposed approach is superior to other feature analysis methodologies, yielding an average classification accuracy of 98.06% and 94.49% under rotational speeds of 50 revolutions-per-minute (RPM) and 80 RPM, respectively. Furthermore, the individually trained MCSVMs with their own optimal fault features based on the proposed GA-based kernel discriminative feature analysis outperform the standard OAA MCSVMs, showing an average accuracy of 98.66% and 95.01% for bearings under rotational speeds of 50 RPM and 80 RPM, respectively.
Resumo:
Unidirectional inductive power transfer (UIPT) systems allow loads to consume power while bidirectional IPT (BIPT) systems are more suitable for loads requiring two way power flow such as vehicle to grid (V2G) applications with electric vehicles (EVs). Many attempts have been made to improve the performance of BIPT systems. In a typical BIPT system, the output power is control using the pickup converter phase shift angle (PSA) while the primary converter regulates the input current. This paper proposes an optimized phase shift modulation strategy to minimize the coil losses of a series – series (SS) compensated BIPT system. In addition, a comprehensive study on the impact of power converters on the overall efficiency of the system is also presented. A closed loop controller is proposed to optimize the overall efficiency of the BIPT system. Theoretical results are presented in comparison to both simulations and measurements of a 0.5 kW prototype to show the benefits of the proposed concept. Results convincingly demonstrate the applicability of the proposed system offering high efficiency over a wide range of output power.