139 resultados para uncertanin nonholonomic dynamic system
Resumo:
Pharmacological MRI (phMRI) techniques can be used to monitor the neurophysiological effects of central nervous system (CNS) active drugs. In this study, we investigated whether dynamic susceptibility contrast (DSC) perfusion imaging employing the use of superparamagnetic iron oxide nanoparticles (Resovist) could be used to measure hemodynamic response to d-amphetamine challenge in human subjects at both 1.5 and 4 T. Significant changes in cerebral blood flow (CBF) were found in focal regions associated with the nigrostriatal circuit and mesolimbic and mesocortical dopaminergic pathways. More significant CBF responses were found at higher field strength, mainly within striatal structures. The results from this study indicate that DSC perfusion imaging using Resovist can be used to assess the efficacy of CNS-active drugs and may play a role in the development of novel psychiatric therapies at the preclinical level. © 2005 Wiley-Liss, Inc.
Optimum position of steel outrigger system for high rise composite buildings subjected to wind loads
Resumo:
The responses of composite buildings under wind loads clearly become more critical as the building becomes taller, less stiff and more lightweight. When the composite building increases in height, the stiffness of the structure becomes more important factor and introduction to belt truss and outrigger system is often used to provide sufficient lateral stiffness to the structure. Most of the research works to date is limited to reinforced concrete building with outrigger system of concrete structure, simple building plan layout, single height of a building, one direction wind and single level of outrigger arrangement. There is a scarcity in research works about the effective position of outrigger level on composite buildings under lateral wind loadings when the building plan layout, height and outrigger arrangement are varied. The aim of this paper is to determine the optimum location of steel belt and outrigger systems by using different arrangement of single and double level outrigger for different size, shape and height of composite building. In this study a comprehensive finite element modelling of composite building prototypes is carried out, with three different layouts (Rectangular, Octagonal and L shaped) and for three different storey (28, 42 and 57-storey). Models are analysed for dynamic cyclonic wind loads with various combination of steel belt and outrigger bracings. It is concluded that the effectiveness of the single and double level steel belt and outrigger bracing are varied based on their positions for different size, shape and height of composite building.
Resumo:
This project constructs a scheduling solution for the Emergency Department. The schedules are generated in real-time to adapt to new patient arrivals and changing conditions. An integrated scheduling formulation assigns patients to beds and treatment tasks to resources. The schedule efficiency is assessed using waiting time and total care time experienced by patients. The solution algorithm incorporates dispatch rules, meta-heuristics and a new extended disjunctive graph formulation which provide high quality solutions in a fast time-frame for real time decision support. This algorithm can be implemented in an electronic patient management system to improve patient flow in the Emergency Department.
Resumo:
This paper presents an unmanned aircraft system (UAS) that uses a probabilistic model for autonomous front-on environmental sensing or photography of a target. The system is based on low-cost and readily-available sensor systems in dynamic environments and with the general intent of improving the capabilities of dynamic waypoint-based navigation systems for a low-cost UAS. The behavioural dynamics of target movement for the design of a Kalman filter and Markov model-based prediction algorithm are included. Geometrical concepts and the Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of a target, thus delivering a new waypoint for autonomous navigation. The results of the application to aerial filming with low-cost UAS are presented, achieving the desired goal of maintained front-on perspective without significant constraint to the route or pace of target movement.
Resumo:
Change in temperature is often a major environmental factor in triggering waterborne disease outbreaks. Previous research has revealed temporal and spatial patterns of bacterial population in several aquatic ecosystems. To date, very little information is available on aquaculture environment. Here, we assessed environmental temperature effects on bacterial community composition in freshwater aquaculture system farming of Litopenaeus vannamei (FASFL). Water samples were collected over a one-year period, and aquatic bacteria were characterized by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and 16S rDNA pyrosequencing. Resulting DGGE fingerprints revealed a specific and dynamic bacterial population structure with considerable variation over the seasonal change, suggesting that environmental temperature was a key driver of bacterial population in the FASFL. Pyrosequencing data further demonstrated substantial difference in bacterial community composition between the water at higher (WHT) and at lower (WLT) temperatures in the FASFL. Actinobacteria, Proteobacteria and Bacteroidetes were the highest abundant phyla in the FASFL, however, a large number of unclassified bacteria contributed the most to the observed variation in phylogenetic diversity. The WHT harbored remarkably higher diversity and richness in bacterial composition at genus and species levels when compared to the WLT. Some potential pathogenenic species were identified in both WHT and WLT, providing data in support of aquatic animal health management in the aquaculture industry.
Resumo:
Changes to the redox status of biological systems have been implicated in the pathogenesis of a wide variety of disorders including cancer, Ischemia-reperfusion (I/R) injury and neurodegeneration. In times of metabolic stress e.g. ischaemia/reperfusion, reactive oxygen species (ROS) production overwhelms the intrinsic antioxidant capacity of the cell, damaging vital cellular components. The ability to quantify ROS changes in vivo, is therefore essential to understanding their biological role. Here we evaluate the suitability of a novel reversible profluorescent probe containing a redox-sensitive nitroxide moiety (methyl ester tetraethylrhodamine nitroxide, ME-TRN), as an in vivo, real-time reporter of retinal oxidative status. The reversible nature of the probe's response offers the unique advantage of being able to monitor redox changes in both oxidizing and reducing directions in real time. After intravitreal administration of the ME-TRN probe, we induced ROS production in rat retina using an established model of complete, acute retinal ischaemia followed by reperfusion. After restoration of blood flow, retinas were imaged using a Micron III rodent fundus fluorescence imaging system, to quantify the redox-response of the probe. Fluorescent intensity declined during the first 60 min of reperfusion. The ROS-induced change in probe fluorescence was ameliorated with the retinal antioxidant, lutein. Fluorescence intensity in non-Ischemia eyes did not change significantly. This new probe and imaging technology provide a reversible and real-time response to oxidative changes and may allow the in vivo testing of antioxidant therapies of potential benefit to a range of diseases linked to oxidative stress
Resumo:
Network topology and routing are two important factors in determining the communication costs of big data applications at large scale. As for a given Cluster, Cloud, or Grid system, the network topology is fixed and static or dynamic routing protocols are preinstalled to direct the network traffic. Users cannot change them once the system is deployed. Hence, it is hard for application developers to identify the optimal network topology and routing algorithm for their applications with distinct communication patterns. In this study, we design a CCG virtual system (CCGVS), which first uses container-based virtualization to allow users to create a farm of lightweight virtual machines on a single host. Then, it uses software-defined networking (SDN) technique to control the network traffic among these virtual machines. Users can change the network topology and control the network traffic programmingly, thereby enabling application developers to evaluate their applications on the same system with different network topologies and routing algorithms. The preliminary experimental results through both synthetic big data programs and NPB benchmarks have shown that CCGVS can represent application performance variations caused by network topology and routing algorithm.
Resumo:
This paper considers the dynamic modelling and motion control of a Surface Effect Ship (SES) for safer transfer of personnel and equipment from vessel to-and-from an offshore wind-turbine. Such a vessel is a key enabling factor for operation and maintenance (O&M) of offshore wind-energy infrastructure. The control system designed is referred to as Boarding Control System (BCS). We investigate the performance of this system for a specific wind-farm service vessel–The Wave Craft. A two-modality vessel model is presented to account for the vessel free motion and motion whilst in contact with a wind-turbine. On a SES, the pressurized air cushion carries the majority of the vessel mass. The control problem considered relates to the actuation of the pressure such that wave-induced vessel motions are minimized. This leads to a safer personnel transfer in developed sea-states than what is possible today. Results for the BCS is presented through simulation and model-scale craft testing.
Resumo:
In this paper, we address the problem of stabilisation of robots subject to nonholonommic constraints and external disturbances using port-Hamiltonian theory and smooth time-invariant control laws. This should be contrasted with the commonly used switched or time-varying laws. We propose a control design that provides asymptotic stability of an manifold (also called relative equilibria)-due to the Brockett condition this is the only type of stabilisation possible using smooth time-invariant control laws. The equilibrium manifold can be shaped to certain extent to satisfy specific control objectives. The proposed control law also incorporates integral action, and thus the closed-loop system is robust to unknown constant disturbances. A key step in the proposed design is a change of coordinates not only in the momentum, but also in the position vector, which differs from coordinate transformations previously proposed in the literature for the control of nonholonomic systems. The theoretical properties of the control law are verified via numerical simulation based on a robotic ground vehicle model with differential traction wheels and non co-axial centre of mass and point of contact.
Resumo:
This report describes the development and simulation of a variable rate controller for a 6-degree of freedom nonlinear model. The variable rate simulation model represents an off the shelf autopilot. Flight experiment involves risks and can be expensive. Therefore a dynamic model to understand the performance characteristics of the UAS in mission simulation before actual flight test or to obtain parameters needed for the flight is important. The control and guidance is implemented in Simulink. The report tests the use of the model for air search and air sampling path planning. A GUI in which a set of mission scenarios, in which two experts (mission expert, i.e. air sampling or air search and an UAV expert) interact, is presented showing the benefits of the method.
Resumo:
With the rapid development of various technologies and applications in smart grid implementation, demand response has attracted growing research interests because of its potentials in enhancing power grid reliability with reduced system operation costs. This paper presents a new demand response model with elastic economic dispatch in a locational marginal pricing market. It models system economic dispatch as a feedback control process, and introduces a flexible and adjustable load cost as a controlled signal to adjust demand response. Compared with the conventional “one time use” static load dispatch model, this dynamic feedback demand response model may adjust the load to a desired level in a finite number of time steps and a proof of convergence is provided. In addition, Monte Carlo simulation and boundary calculation using interval mathematics are applied for describing uncertainty of end-user's response to an independent system operator's expected dispatch. A numerical analysis based on the modified Pennsylvania-Jersey-Maryland power pool five-bus system is introduced for simulation and the results verify the effectiveness of the proposed model. System operators may use the proposed model to obtain insights in demand response processes for their decision-making regarding system load levels and operation conditions.
Resumo:
This paper presents an approach for dynamic state estimation of aggregated generators by introducing a new correction factor for equivalent inter-area power flows. The spread of generators from the center of inertia of each area is summarized by the correction term α on the equivalent power flow between the areas and is applied to the identification and estimation process. A nonlinear time varying Kalman filter is applied to estimate the equivalent angles and velocities of coherent areas by reducing the effect of local modes on the estimated states. The approach is simulated on two test systems and the results show the effect of the correction factor and the performance of the state estimation by estimating the inter-area dynamics of the system.
Resumo:
Online dynamic load modeling has become possible with the availability of Static Voltage Compensator (SVC) and Phasor Measurement Unit (PMU) devices. The power of the load response to the small random bounded voltage fluctuations caused from SVC can be measured by PMU for modelling purposes. The aim of this paper is to illustrate the capability of identifying an aggregated load model from high voltage substation level in the online environment. The induction motor is used as the main test subject since it contributes the majority of the dynamic loads. A test system representing simple electromechanical generator model serving dynamic loads through the transmission network is used to verify the proposed method. Also, dynamic load with multiple induction motors are modeled to achieve a better realistic load representation.
Resumo:
Electromechanical wave propagation characterizes the first-swing dynamic response in a spatially delayed manner. This paper investigates the characteristics of this phenomenon in two-dimensional and one-dimensional power systems. In 2-D systems, the wave front expands as a ripple in a pond. In 1-D systems, the wave front is more concentrated, retains most of its magnitude, and travels like a pulse on a string. This large wave front is more impactful upon any weak link and easily causes transient instability in 1-D systems. The initial disturbance injects both high and low frequency components, but the lumped nature of realistic systems only permits the lower frequency components to propagate through. The kinetic energy split at a junction is equal to the generator inertia ratio in each branch in an idealized continuum system. This prediction is approximately valid in a realistic power system. These insights can enhance understanding and control of the traveling waves.
Resumo:
Dynamic Bayesian Networks (DBNs) provide a versatile platform for predicting and analysing the behaviour of complex systems. As such, they are well suited to the prediction of complex ecosystem population trajectories under anthropogenic disturbances such as the dredging of marine seagrass ecosystems. However, DBNs assume a homogeneous Markov chain whereas a key characteristics of complex ecosystems is the presence of feedback loops, path dependencies and regime changes whereby the behaviour of the system can vary based on past states. This paper develops a method based on the small world structure of complex systems networks to modularise a non-homogeneous DBN and enable the computation of posterior marginal probabilities given evidence in forwards inference. It also provides an approach for an approximate solution for backwards inference as convergence is not guaranteed for a path dependent system. When applied to the seagrass dredging problem, the incorporation of path dependency can implement conditional absorption and allows release from the zero state in line with environmental and ecological observations. As dredging has a marked global impact on seagrass and other marine ecosystems of high environmental and economic value, using such a complex systems model to develop practical ways to meet the needs of conservation and industry through enhancing resistance and/or recovery is of paramount importance.