174 resultados para spine joint torques
Resumo:
As Unmanned Aircraft Systems (UAS) grow in complexity, and their level of autonomy increases|moving away from the concept of a remotely piloted systems and more towards autonomous systems|there is a need to further improve reliability and tolerance to faults. The traditional way to accommodate actuator faults is by using standard control allocation techniques as part of the flight control system. The allocation problem in the presence of faults often requires adding constraints that quantify the maximum capacity of the actuators. This in turn requires on-line numerical optimisation. In this paper, we propose a framework for joint allocation and constrained control scheme via vector input scaling. The actuator configuration is used to map actuator constraints into the space of the aircraft generalised forces, which are the magnitudes demanded by the light controller. Then by constraining the output of controller, we ensure that the allocation function always receive feasible demands. With the proposed framework, the allocation problem does not require numerical optimisation, and since the controller handles the constraints, there is not need to implement heuristics to inform the controller about actuator saturation.
Resumo:
Portable water-filled road barriers (PWFB) are roadside structures placed on temporary construction zones to separate work site from traffic. Recent changes in governing standards require PWFB to adhere to strict compliance in terms of lateral displacement and vehicle redirectionality. Actual PWFB test can be very costly, thus researchers resort to Finite Element Analysis (FEA) in the initial designs phase. There has been many research conducted on concrete barriers and flexible steel barriers using FEA, however not many was done pertaining to PWFB. This research probes a new technique to model joints in PWFB. Two methods to model the joining mechanism are presented and discussed in relation to its practicality and accuracy. Moreover, the study of the physical gap and mass of the barrier was investigated. Outcome from this research will benefit PWFB research and allow road barrier designers better knowledge in developing the next generation of road safety structures.
Resumo:
Portable water-filled barriers (PWFBs) are roadside appurtenances that prevent vehicles from penetrating into temporary construction zones on roadways. PWFBs are required to satisfy the strict regulations for vehicle re-direction in tests. However, many of the current PWFBs fail to re-direct the vehicle at high speeds due to the inability of the joints to provide appropriate stiffness. The joint mechanism hence plays a crucial role in the performance of a PWFB system at high speed impacts. This paper investigates the desired features of the joint mechanism in a PWFB system that can re-direct vehicles at high speeds, while limiting the lateral displacement to acceptable limits. A rectangular “wall” representative of a 30 m long barrier system was modeled and a novel method of joining adjacent road barriers was introduced through appropriate pin-joint connections. The impact response of the barrier “wall” and the vehicle was obtained and the results show that a rotational stiffness of 3000 kNm/rad at the joints seems to provide the desired features of the PWFB system to re-direct impacting vehicles and restrict the lateral deflection. These research findings will be useful to safety engineers and road barrier designers in developing a new generation of PWFBs for increased road safety.
Resumo:
Charge reversal (CR) and neutralization reionization (NR) experiments carried out on a 4-sector mass spectrometer demonstrate that isotopically labeled, linear C-4 anion rearranges upon collisional oxidation. The cations and neutrals formed in these experiments exhibit differing degrees of isotopic scrambling in their fragmentation patterns, indicative of (at least) partial isomerization of both states. Theoretical studies, employing the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31G(d) level of theory, favor conversion to the rhombic C-4 isomer on both cationic and neutral potential-energy surfaces with the rhombic structures predicted to be slightly more stable than the linear forms in each case. The combination of experiment with theory indicates that the elusive rhombic C-4 is formed as a cation and as a neutral following charge stripping of linear C-4(-)
Resumo:
Neutral NCN is made in a mass spectrometer by charge stripping of NCN-., while neutral dicyanocarbene NCCCN can be formed by neutralization of either the corresponding anionic and cationic species, NCCCN-. and NCCCN+.. Theoretical calculations at the RCCSD(T)/aug-cc-pVTZ//B3LYP/6-31+G(d) level of theory indicate that the (3)Sigma (-)(g) State of NCCCN is 18 kcal mol(-1) more stable than the (1)A(1) state. While the majority of neutrals formed from either NCCCN-. or NCCCN+. correspond to NCCCN, a proportion of the neutral NCCCN molecules have sufficient excess energy to effect rearrangement, as evidenced by a loss of atomic carbon in the neutralization reionization (NR) spectra of either NCCCN+. and NCCCN-.. C-13 labeling studies indicate that loss of carbon occurs statistically following or accompanied by scrambling of all three carbon atoms. A theoretical study at the B3LYP/6-31+G(d)//B3LYP/6-31+G(d) level of theory indicates that C loss is a consequence of the rearrangement sequence NCCCN --> CNCCN --> CNCNC and that C scrambling occurs within singlet CNCCN via the intermediacy of a four-membered C-2v-symmetrical transition structure.
Resumo:
Three different radical anions of the empirical formula C5H2 have been generated by negative ion chemical ionization mass spectrometry in the gas phase. The isomers C4CH2 •-, and HC5H•- have been synthesized by unequivocal routes and their connectivities confirmed by deuterium labeling, charge reversal, and neutralization reionization experiments. The results also provided evidence for the existence of neutrals C4CH2, C2CHC2H, and HC5H as stable species; this is the first reported observation of C2CHC2H. Ab initio calculations confirm these structures to be minima on the anion and neutral potential energy surfaces.
Resumo:
Existing multi-model approaches for image set classification extract local models by clustering each image set individually only once, with fixed clusters used for matching with other image sets. However, this may result in the two closest clusters to represent different characteristics of an object, due to different undesirable environmental conditions (such as variations in illumination and pose). To address this problem, we propose to constrain the clustering of each query image set by forcing the clusters to have resemblance to the clusters in the gallery image sets. We first define a Frobenius norm distance between subspaces over Grassmann manifolds based on reconstruction error. We then extract local linear subspaces from a gallery image set via sparse representation. For each local linear subspace, we adaptively construct the corresponding closest subspace from the samples of a probe image set by joint sparse representation. We show that by minimising the sparse representation reconstruction error, we approach the nearest point on a Grassmann manifold. Experiments on Honda, ETH-80 and Cambridge-Gesture datasets show that the proposed method consistently outperforms several other recent techniques, such as Affine Hull based Image Set Distance (AHISD), Sparse Approximated Nearest Points (SANP) and Manifold Discriminant Analysis (MDA).
Resumo:
This thesis investigates the fusion of 3D visual information with 2D image cues to provide 3D semantic maps of large-scale environments in which a robot traverses for robotic applications. A major theme of this thesis was to exploit the availability of 3D information acquired from robot sensors to improve upon 2D object classification alone. The proposed methods have been evaluated on several indoor and outdoor datasets collected from mobile robotic platforms including a quadcopter and ground vehicle covering several kilometres of urban roads.
Resumo:
Three anion isomers of formula C7H have been synthesised in the mass spectrometer by unequivocal routes. The structures of the isomers are \[HCCC(C-2)(2)](-), C6CH- and C2CHC4-. One of these, \[HCCC(C-2)(2)](-), is formed in sufficient yield to allow it to be charge stripped to the corresponding neutral radical.
Resumo:
Mortality following hip arthroplasty is affected by a large number of confounding variables each of which must be considered to enable valid interpretation. Relevant variables available from the 2011 NJR data set were included in the Cox model. Mortality rates in hip arthroplasty patients were lower than in the age-matched population across all hip types. Age at surgery, ASA grade, diagnosis, gender, provider type, hip type and lead surgeon grade all had a significant effect on mortality. Schemper's statistic showed that only 18.98% of the variation in mortality was explained by the variables available in the NJR data set. It is inappropriate to use NJR data to study an outcome affected by a multitude of confounding variables when these cannot be adequately accounted for in the available data set.
Resumo:
Periprosthetic joint infection (PJI) after THA is a major complication with an incidence of 1-3%. We report our experiences with a technique using a custom-made articulating spacer (CUMARS) at the first of two-stage treatment for PJI. This technique uses widely available all-polyethylene acetabular components and the Exeter Universal stem, fixed using antibiotic loaded acrylic cement. Seventy-six hips were treated for PJI using this technique. Performed as the first of a two-stage procedure, good functional results were commonly seen, leading to postponing second stage indefinitely with retention of the CUMARS prosthesis in 34 patients. The CUMARS technique presents an alternative to conventional spacers, using readily available components that are well tolerated, allowing weight bearing and mobility, and achieving comparable eradication rates.
Resumo:
Introduction There is growing interest in the biomechanics of ‘fusionless’ implant constructs used for deformity correction in the thoracic spine. Intervertebral stapling is a leading method of fusionless corrective surgery. Although used for a number of years, there is limited evidence as to the effect these staples have on the stiffness of the functional spinal unit. Materials and Methods Thoracic spines from 6-8 week old calves were dissected and divided into motion segments including levels T4-T11 (n=14). Each segment was potted in polymethylemethacrylate. An Instron Biaxial materials testing machine with a custom made jig was used for testing. The segments were tested in flexion/extension, lateral bending and axial rotation at 37⁰C and 100% humidity, using moment control to a maximum 1.75 Nm with a loading rate of 0.3 Nm per second. This torque was found sufficient to achieve physiologically representative ranges of movement. The segments were initially tested uninstrumented with data collected from the tenth load cycle. Next a left anterolateral Shape Memory Alloy (SMA) staple was inserted (Medtronic Sofamor Danek, USA). Biomechanical testing was repeated as before with data collected from the tenth load cycle. Results In flexion/extension there was an insignificant drop in stiffness of 3% (p=0.478). In lateral bending there was a significant drop in stiffness of 21% (p<0.001). This was mainly in lateral bending away from the staple, where the stiffness reduced by 30% (p<0.001). This was in contrast to lateral bending towards the staple where it dropped by 12% which was still statistically significant (p=0.036). In axial rotation there was an overall near significant drop in stiffness of 11% (p=0.076). However, this was more towards the side of the staple measuring a decrease of 14% as opposed to 8% away from the staple. In both cases it was a statistically insignificant drop (p=0.134 and p=0.352 respectively). Conclusion Insertion of intervertebral SMA staples results in a significant reduction in motion segment stiffness in lateral bending especially in the direction away from the staple. The staple had less effect on axial rotation stiffness and minimal effect on flexion/extension stiffness.
Resumo:
Introduction: In an attempt to reduce stress shielding in the proximal femur multiple new shorter stem design have become available. We investigated the load to fracture of a new polished tapered cemented short stem in comparison to the conventional polished tapered Exeter stem. Method: A total of forty-two stems, twenty-one short stems and twenty-one conventional stems both with three different offsets were cemented in a composite sawbone model and loaded to fracture. Results: study showed that femurs will break at a significantly lower load to failure with a shorter compared to conventional length Exeter stem. Conclusion: This Both standard and short stem design are safe to use as the torque to failure is 7–10 times as much as the torques seen in activities of daily living.
Career counseling : joint contributions of contextual action theory and the systems theory framework
Resumo:
The influence of constructivism and the ongoing drive for convergence, both of career theories and between theory and practice, have been key drivers in the career development literature for two decades (Patton, International Handbook of Career Guidance, 2008). Both contextual action theory and systems theory are derived from the root metaphor of contextualism, which has been proffered as a worldview to assist scientists and practitioners in organizing day-to-day experiential data. This chapter identifies the theoretical contributions of the Systems Theory Framework (STF) (Patton and McMahon, Career development and systems theory: A new development, 1999, Career psychology in South Africa, 2006) and Contextual Action Theory (Young and Valach, The future of career, 2000, Journal of Vocational Behavior 64:499–514, 2004; Young et al., Career choice and development, 1996, Career choice and development, 2002), each of which has advanced thinking in theory integration and in the integration between theory and practice in the career development and counseling field. Young et al. (Career development in childhood and adolescence, 2007) noted the connections between the Patton and McMahon systems theory approach and the contextual action theory approach and these connections will be highlighted in terms of the application of these theoretical developments to practice in career counseling, with a particular focus on the commonalities between the two approaches and what counselors can learn from each of them. In particular, this chapter will discuss common conceptual understandings and practice dimensions.