129 resultados para series-parallel model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fast restoration of critical loads and non-black-start generators can significantly reduce the economic losses caused by power system blackouts. In a parallel power system restoration scenario, the sectionalization of restoration subsystems plays a very important role in determining the pickup of critical loads before synchronization. Most existing research mainly focuses on the startup of non-black-start generators. The restoration of critical loads, especially the loads with cold load characteristics, has not yet been addressed in optimizing the subsystem divisions. As a result, sectionalized restoration subsystems cannot achieve the best coordination between the pickup of loads and the ramping of generators. In order to generate sectionalizing strategies considering the pickup of critical loads in parallel power system restoration scenarios, an optimization model considering power system constraints, the characteristics of the cold load pickup and the features of generator startup is proposed in this paper. A bi-level programming approach is employed to solve the proposed sectionalizing model. In the upper level the optimal sectionalizing problem for the restoration subsystems is addressed, while in the lower level the objective is to minimize the outage durations of critical loads. The proposed sectionalizing model has been validated by the New-England 39-bus system and the IEEE 118-bus system. Further comparisons with some existing methods are carried out as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transfusion of platelet concentrates (PCs) is widely used to treat thrombocytopenia and severe trauma. Ex vivo storage of PCs is associated with a storage lesion characterized by partial platelet activation and the release of soluble mediators, such as soluble CD40 ligand (sCD40L), RANTES, and interleukin (IL)-8. An in vitro whole blood culture transfusion model was employed to assess whether mediators present in PC supernatants (PC-SNs) modulated dendritic cell (DC)-specific inflammatory responses (intracellular staining) and the overall inflammatory response (cytometric bead array). Lipopolysaccharide (LPS) was included in parallel cultures to model the impact of PC-SNs on cell responses following toll-like receptor-mediated pathogen recognition. The impact of both the PC dose (10%, 25%) and ex vivo storage period was investigated [day 2 (D2), day 5 (D5), day 7 (D7)]. PC-SNs alone had minimal impact on DC-specific inflammatory responses and the overall inflammatory response. However, in the presence of LPS, exposure to PC-SNs resulted in a significant dose associated suppression of the production of DC IL-12, IL-6, IL-1a, tumor necrosis factor-a (TNF-a), and macrophage inflammatory protein (MIP)-1b and storage-associated suppression of the production of DC IL-10, TNF-a, and IL-8. For the overall inflammatory response, IL-6, TNF-a, MIP-1a, MIP-1b, and inflammatory protein (IP)-10 were significantly suppressed and IL-8, IL-10, and IL-1b significantly increased following exposure to PC-SNs in the presence of LPS. These data suggest that soluble mediators present in PCs significantly suppress DC function and modulate the overall inflammatory response, particularly in the presence of an infectious stimulus. Given the central role of DCs in the initiation and regulation of the immune response, these results suggest that modulation of the DC inflammatory profile is a probable mechanism contributing to transfusion-related complications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multifractal properties of daily rainfall time series at the stations in Pearl River basin of China over periods of up to 45 years are examined using the universal multifractal approach based on the multiplicative cascade model and the multifractal detrended fluctuation analysis (MF-DFA). The results from these two kinds of multifractal analyses show that the daily rainfall time series in this basin have multifractal behavior in two different time scale ranges. It is found that the empirical multifractal moment function K(q)K(q) of the daily rainfall time series can be fitted very well by the universal multifractal model (UMM). The estimated values of the conservation parameter HH from UMM for these daily rainfall data are close to zero indicating that they correspond to conserved fields. After removing the seasonal trend in the rainfall data, the estimated values of the exponent h(2)h(2) from MF-DFA indicate that the daily rainfall time series in Pearl River basin exhibit no long-term correlations. It is also found that K(2)K(2) and elevation series are negatively correlated. It shows a relationship between topography and rainfall variability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates several competing procedures for computing the prices of vanilla European options, such as puts, calls and binaries, in which the underlying model has a characteristic function that is known in semi-closed form. The algorithms investigated here are the half-range Fourier cosine series, the half-range Fourier sine series and the full-range Fourier series. Their performance is assessed in simulation experiments in which an analytical solution is available and also for a simple affine model of stochastic volatility in which there is no closed-form solution. The results suggest that the half-range sine series approximation is the least effective of the three proposed algorithms. It is rather more difficult to distinguish between the performance of the halfrange cosine series and the full-range Fourier series. However there are two clear differences. First, when the interval over which the density is approximated is relatively large, the full-range Fourier series is at least as good as the half-range Fourier cosine series, and outperforms the latter in pricing out-of-the-money call options, in particular with maturities of three months or less. Second, the computational time required by the half-range Fourier cosine series is uniformly longer than that required by the full-range Fourier series for an interval of fixed length. Taken together,these two conclusions make a case for pricing options using a full-range range Fourier series as opposed to a half-range Fourier cosine series if a large number of options are to be priced in as short a time as possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider the third-moment structure of a class of time series models. It is often argued that the marginal distribution of financial time series such as returns is skewed. Therefore it is of importance to know what properties a model should possess if it is to accommodate unconditional skewness. We consider modeling the unconditional mean and variance using models that respond nonlinearly or asymmetrically to shocks. We investigate the implications of these models on the third-moment structure of the marginal distribution as well as conditions under which the unconditional distribution exhibits skewness and nonzero third-order autocovariance structure. In this respect, an asymmetric or nonlinear specification of the conditional mean is found to be of greater importance than the properties of the conditional variance. Several examples are discussed and, whenever possible, explicit analytical expressions provided for all third-order moments and cross-moments. Finally, we introduce a new tool, the shock impact curve, for investigating the impact of shocks on the conditional mean squared error of return series.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the growing importance of the Chinese tourist market to Australia, an understanding of Chinese tourists' arrival patterns is essential to accurate forecasting of future arrivals. Drawing on 25 years of records (1991-2015), this study developed a time-series model of monthly arrivals of Chinese tourists in Australia. The model reflects the exponentially increasing trend and strong seasonality of arrivals. Excellent results from validation of the model's forecasts endorsed this time-series model's potential in the policy prescription and management practice of Australian tourism industries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stochastic volatility models are of fundamental importance to the pricing of derivatives. One of the most commonly used models of stochastic volatility is the Heston Model in which the price and volatility of an asset evolve as a pair of coupled stochastic differential equations. The computation of asset prices and volatilities involves the simulation of many sample trajectories with conditioning. The problem is treated using the method of particle filtering. While the simulation of a shower of particles is computationally expensive, each particle behaves independently making such simulations ideal for massively parallel heterogeneous computing platforms. In this paper, we present our portable Opencl implementation of the Heston model and discuss its performance and efficiency characteristics on a range of architectures including Intel cpus, Nvidia gpus, and Intel Many-Integrated-Core (mic) accelerators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examine the interaction between commodity taxes and parallel imports in a two-country model with imperfect competition. While governments determine non-cooperatively their commodity tax rate, the volume of parallel imports is determined endogenously by the retailing sector. We compare the positive and normative implications of having commodity taxes based on destination or origin principle. We show that, as the volume of parallel imports increases, non-cooperative origin taxes converge, while destination taxes diverge. Moreover, origin taxes are more similar and lead to higher aggregate welfare levels than destination taxes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quality of short-term electricity load forecasting is crucial to the operation and trading activities of market participants in an electricity market. In this paper, it is shown that a multiple equation time-series model, which is estimated by repeated application of ordinary least squares, has the potential to match or even outperform more complex nonlinear and nonparametric forecasting models. The key ingredient of the success of this simple model is the effective use of lagged information by allowing for interaction between seasonal patterns and intra-day dependencies. Although the model is built using data for the Queensland region of Australia, the method is completely generic and applicable to any load forecasting problem. The model’s forecasting ability is assessed by means of the mean absolute percentage error (MAPE). For day-ahead forecast, the MAPE returned by the model over a period of 11 years is an impressive 1.36%. The forecast accuracy of the model is compared with a number of benchmarks including three popular alternatives and one industrial standard reported by the Australia Energy Market Operator (AEMO). The performance of the model developed in this paper is superior to all benchmarks and outperforms the AEMO forecasts by about a third in terms of the MAPE criterion.