141 resultados para robot fish
Resumo:
In contrast to single robotic agent, multi-robot systems are highly dependent on reliable communication. Robots have to synchronize tasks or to share poses and sensor readings with other agents, especially for co-operative mapping task where local sensor readings are incorporated into a global map. The drawback of existing communication frameworks is that most are based on a central component which has to be constantly within reach. Additionally, they do not prevent data loss between robots if a failure occurs in the communication link. During a distributed mapping task, loss of data is critical because it will corrupt the global map. In this work, we propose a cloud-based publish/subscribe mechanism which enables reliable communication between agents during a cooperative mission using the Data Distribution Service (DDS) as a transport layer. The usability of our approach is verified by several experiments taking into account complete temporary communication loss.
Resumo:
Currently, the inspection of sea-going vessels is performed manually. Ship surveyors do a visual inspection; in some cases they also use cameras and non-destructive testing methods. Prior to a ship surveying process a lot of scaffolding has to be provided in order to make every spot accessible for the surveyor. In this work a robotic system is presented, which is able to access many areas of a cargo hold of a ship and perform visual inspection without any scaffolding. The paper also describes how the position of the acquired data is estimated with an optical 3D tracking unit and how critical points on the hull can be marked via a remote controlled marker device. Furthermore first results of onboard tests with the system are provided.
Resumo:
The International Journal of Robotics Research (IJRR) has a long history of publishing the state-of-the-art in the field of robotic vision. This is the fourth special issue devoted to the topic. Previous special issues were published in 2012 (Volume 31, No. 4), 2010 (Volume 29, Nos 2–3) and 2007 (Volume 26, No. 7, jointly with the International Journal of Computer Vision). In a closely related field was the special issue on Visual Servoing published in IJRR, 2003 (Volume 22, Nos 10–11). These issues nicely summarize the highlights and progress of the past 12 years of research devoted to the use of visual perception for robotics.
Resumo:
Particle swarm optimization (PSO), a new population based algorithm, has recently been used on multi-robot systems. Although this algorithm is applied to solve many optimization problems as well as multi-robot systems, it has some drawbacks when it is applied on multi-robot search systems to find a target in a search space containing big static obstacles. One of these defects is premature convergence. This means that one of the properties of basic PSO is that when particles are spread in a search space, as time increases they tend to converge in a small area. This shortcoming is also evident on a multi-robot search system, particularly when there are big static obstacles in the search space that prevent the robots from finding the target easily; therefore, as time increases, based on this property they converge to a small area that may not contain the target and become entrapped in that area.Another shortcoming is that basic PSO cannot guarantee the global convergence of the algorithm. In other words, initially particles explore different areas, but in some cases they are not good at exploiting promising areas, which will increase the search time.This study proposes a method based on the particle swarm optimization (PSO) technique on a multi-robot system to find a target in a search space containing big static obstacles. This method is not only able to overcome the premature convergence problem but also establishes an efficient balance between exploration and exploitation and guarantees global convergence, reducing the search time by combining with a local search method, such as A-star.To validate the effectiveness and usefulness of algorithms,a simulation environment has been developed for conducting simulation-based experiments in different scenarios and for reporting experimental results. These experimental results have demonstrated that the proposed method is able to overcome the premature convergence problem and guarantee global convergence.
Resumo:
Interleukin-10 (IL-10) is an important immunoregulatory cytokine produced by various types of cells. Researchers describe here the isolation and characterization of olive flounder IL-10 (ofIL-10) cDNA and genomic organization. The ofIL-10 gene encodes a 187 amino acid protein and is composed of a five exon/four intron structure, similar to other known IL-10 genes. The ofIL-10 promoter sequence analysis shows a high level of homology in putative binding sites for transcription factors which are sufficient for transcriptional regulation ofIL-10. Important structural residues are maintained in the ofIL-10 protein including the four cysteines responsible for the two intra-chain disulfide bridges reported for human IL-10 and two extra cysteine residues that exist only in fish species. The phylogenetic analysis clustered ofIL-10 with other fish IL-10s and apart from mammalian IL-10 molecules. Quantitative real-time Polymerase Chain Reaction (PCR) analysis demonstrated ubiquitous ofIL-10 gene expression in the 13 tissues examined. Additionally, the induction of ofIL-10 gene expression was observed in the kidney tissue from olive flounder infected with bacteria (Edawardsiella tarda) or virus (Viral Hemorrhagic Septicemia Virus; VHSV). These data indicate that IL-10 is an important immune regulator that is conserved strictly genomic organization and function during the evolution of vertebrate immunity.
Resumo:
Adaptive phenotypic plasticity, the ability of an organism to change its phenotype to match local environments, is increasingly recognized for its contribution to evolution. However, few empirical studies have explored the molecular basis of plastic traits. The East African cichlid fish Astatoreochromis alluaudi displays adaptive phenotypic plasticity in its pharyngeal jaw apparatus, a structure that is widely seen as an evolutionary key innovation that has contributed to the remarkable diversity of cichlid fishes. It has previously been shown that in response to different diets, the pharyngeal jaws change their size, shape and dentition: hard diets induce an adaptive robust molariform tooth phenotype with short jaws and strong internal bone structures, while soft diets induce a gracile papilliform tooth phenotype with elongated jaws and slender internal bone structures. To gain insight into the molecular underpinnings of these adaptations and enable future investigations of the role that phenotypic plasticity plays during the formation of adaptive radiations, the transcriptomes of the two divergent jaw phenotypes were examined. Our study identified a total of 187 genes whose expression differs in response to hard and soft diets, including immediate early genes, extracellular matrix genes and inflammatory factors. Transcriptome results are interpreted in light of expression of candidate genesmarkers for tooth size and shape, bone cells and mechanically sensitive pathways. This study opens up new avenues of research at new levels of biological organization into the roles of phenotypic plasticity during speciation and radiation of cichlid fishes.
Resumo:
The possible differences between sexes in patterns of morphological variation in geographical space have been explored only in gonochorist freshwater species. We explored patterns of body shape variation in geographical space in a marine sequential hermaphrodite species, Coris julis (L. 1758), analyzing variation both within and between colour phases, through the use of geometric morphometrics and spatially-explicit statistical analyses. We also tested for the association of body shape with two environmental variables: temperature and chlorophyll a concentration, as obtained from time-series of satellite-derived data. Both colour phases showed a significant morphological variation in geographical space and patterns of variation divergent between phases. Although the morphological variation was qualitatively similar, individuals in the initial colour phase showed a more marked variation than individuals in the terminal phase. Body shape showed a weak but significant correlation with environmental variables, which was more pronounced in primary specimens.
Resumo:
Protogynous sequential hermaphroditism is very common in marine fish. Despite a large number of studies on various aspects of sequential hermaphroditism in fish, the relationship between body shape and colour during growth in dichromatic species has not been assessed. Using geometric morphometrics, the present study explores the relationship between growth, body shape and colouration in Coris julis (L. 1758), a small protogynous labrid species with distinct colour phases. Results show that body shape change during growth is independent of change in colour phase, a result which can be explained by the biology of the species and by the social control of sex change. Also, during growth the body grows deeper and the head has a steeper profile. It is hypothesized that a deeper body and a steeper profile might have a function in agonistic interactions between terminal phase males and that the marked chromatic difference between colour phases allows the lack of strict interdependence of body shape and colour during growth.
Resumo:
Gut bacterial communities are now known to influence a range of fitness related aspects of organisms. But how different the microbial community is in closely related species, and if these differences can be interpreted as adaptive is still unclear. In this study we compared microbial communities in two sets of closely related sympatric crater lake cichlid fish species pairs that show similar adaptations along the limnetic-benthic axis. The gut microbial community composition differs in the species pair inhabiting the older of two crater lakes. One major difference, relative to other fish, is that in these cichlids that live in hypersaline crater lakes, the microbial community is largely made up of Oceanospirillales (52.28%) which are halotolerant or halophilic bacteria. This analysis opens up further avenues to identify candidate symbiotic or co-evolved bacteria playing a role in adaptation to similar diets and life-styles or even have a role in speciation. Future functional and phylosymbiotic analyses might help to address these issues.
Resumo:
In fisheries managed using individual transferable quotas (ITQs) it is generally assumed that quota markets are well-functioning, allowing quota to flow on either a temporary or permanent basis to those able to make best use of it. However, despite an increasing number of fisheries being managed under ITQs, empirical assessments of the quota markets that have actually evolved in these fisheries remain scarce. The Queensland Coral Reef Fin-Fish Fishery (CRFFF) on the Great Barrier Reef has been managed under a system of ITQs since 2004. Data on individual quota holdings and trades for the period 2004-2012 were used to assess the CRFFF quota market and its evolution through time. Network analysis was applied to assess market structure and the nature of lease-trading relationships. An assessment of market participants’ abilities to balance their quota accounts, i.e., gap analysis, provided insights into market functionality and how this may have changed in the period observed. Trends in ownership and trade were determined, and market participants were identified as belonging to one out of a set of seven generalized types. The emergence of groups such as investors and lease-dependent fishers is clear. In 2011-2012, 41% of coral trout quota was owned by participants that did not fish it, and 64% of total coral trout landings were made by fishers that owned only 10% of the quota. Quota brokers emerged whose influence on the market varied with the bioeconomic conditions of the fishery. Throughout the study period some quota was found to remain inactive, implying potential market inefficiencies. Contribution to this inactivity appeared asymmetrical, with most residing in the hands of smaller quota holders. The importance of transaction costs in the operation of the quota market and the inequalities that may result are discussed in light of these findings
Resumo:
Chlamydial infections of fish are emerging as an important cause of disease in new and established aquaculture industries. To date, epitheliocystis, a skin and gill disease associated with infection by these obligate intracellular pathogens, has been described in over 90 fish species, including hosts from marine and fresh water environments. Aided by advances in molecular detection and typing, recent years have seen an explosion in the description of these epitheliocystis-related chlamydial pathogens of fish, significantly broadening our knowledge of the genetic diversity of the order Chlamydiales. Remarkably, in most cases, it seems that each new piscine host studied has revealed the presence of a phylogenetically unique and novel chlamydial pathogen, providing researchers with a fascinating opportunity to understand the origin, evolution and adaptation of their traditional terrestrial chlamydial relatives. Despite the advances in this area, much still needs to be learnt about the epidemiology of chlamydial infections in fish if these pathogens are to be controlled in farmed environments. The lack of in vitro methods for culturing of chlamydial pathogens of fish is a major hindrance to this field. This review provides an update on our current knowledge of the taxonomy and diversity of chlamydial pathogens of fish, discusses the impact of these infections on the health, and highlights further areas of research required to understand the biology and epidemiology of this important emerging group of fish pathogens of aquaculture species.
Resumo:
The fate of two popular antibiotics, oxytetracycline and oxolinic acid, in a fish pond were simulated using a computational model. The VDC model, which is designed based on a model for predicting pesticide fate and transport in paddy fields, was modified to take into account the differences between the pond and the paddies as well as those between the fish and the rice plant behaviors. The pond conditions were set following the typical practice in South East Asia aquaculture. The two antibiotics were administered to the animal in the pond through medicated feed during a period of 5 days as in actual practice. Concentrations of oxytetracycline in pond water were higher than those of oxolinic acid at the beginning of the simulation. Dissipation rate of oxytetracycline is also higher as it is more readily available for degradation in the water. For the long term, oxolinic acid was present at higher concentration than oxytetracycline in pond water as well as pond sediment. The simulated results were expected to be conservative and can be useful for the lower tier assessment of exposure risk of veterinary medicine in aquaculture industry but more data are needed for the complete validation of the model.
Resumo:
Natural resource managers and scientists focus on the behaviour of individual recreational fishers to understand environmental problems associated with this leisure activity. They do this in an effort to identify ways to change attitudes in order to facilitate environmentally friendly choices. This applied use of ABC psychology (attitude, behaviour, choice) has not delivered the expected results. This article offers a different approach by investigating an emergent practice in diverse fishing communities, rather than looking to the responsibility of the individual recreational fisher. Using practice theory, I trace the change from take-all to catch-and-release fishing in Australia by analysing the texts of celebrity fisher Rex Hunt, who is an advocate for releasing fish. I combine this with oral history testimony from a sample of recreational fishers from the broader Australian community to show how change happened. The practice of catch-and-release fishing emerged through the combination of sociotechnical and historically specific elements present in popular culture, including the media. Paying attention to the way different elements catalyse provides a rich account of the changing modes of sustainability in recreational fishing communities.
Resumo:
Robot Path Planning (RPP) in dynamic environments is a search problem based on the examination of collision-free paths in the presence of dynamic and static obstacles. Many techniques have been developed to solve this problem. Trapping in a local minima and maintaining a Real-Time performance are known as the two most important challenges that these techniques face to solve such problem. This study presents a comprehensive survey of the various techniques that have been proposed in this domain. As part of this survey, we include a classification of the approaches and identify their methods.
Resumo:
Reducing unwanted trawl bycatch is actively encouraged in Australia, particularly in prawn trawl fisheries. We tested the performance of a Bycatch Reduction Device, the Yarrow Fisheye, during two periods of commercial fishing operations in Australia's Northern Prawn Fishery, by comparing the catches of paired treatment and control nets. We compared the catch weights of the small fish and invertebrate bycatch, and the commercially important tiger prawns, from 42 trawls in 2002. The Yarrow Fisheye reduced the weight of small bycatch by a mean of 22.7%, with no loss of tiger prawn. We also compared the numbers of seasnakes caught in 41 and 72 trawls during the spring trawling seasons of 2004 and 2005, respectively. The Yarrow Fisheye reduced the catches by a mean of 43.3%. Flume-tank tests of the Yarrow Fisheye showed that this device created a slow water-flow region extending over 2 m downstream from its position in the net, and close to where the catch accumulates. Finfish and seasnakes may be exploiting this slow water-flow region to escape via the eye, Although the reductions in fish and seasnake bycatch were excellent, we think they could be further improved by relating differences in fisheye position and localised water displacements, to design and rigging changes.