695 resultados para road vehicles
Resumo:
This study explored the beliefs and attitudes of cyclists and drivers regarding cyclist visibility, use of visibility aids and crashes involving cyclists and motorists. Data are presented for 1460 participants (622 drivers and 838 cyclists) and demonstrate that there are high rates of cyclist–vehicle crashes, many of which were reported to be due to the driver not seeing the cyclist in time to avoid a collision. A divergence in attitudes was also apparent in terms of attribution of responsibility in cyclist–vehicle conflicts on the road. While the use of visibility aids was advocated by cyclists, this was not reflected in self-reported wearing patterns, and cyclists reported that the distance at which they would be first recognised by a driver was twice that estimated by the drivers. Collectively, these results suggest that interventions should target cyclists’ use of visibility aids, which is less than optimal in this population, as well as re-educating both groups regarding visibility issues.
Resumo:
OBJECTIVES: To quantify the driving difficulties of older adults using a detailed assessment of driving performance and to link this with self-reported retrospective and prospective crashes. DESIGN: Prospective cohort study. SETTING: On-road driving assessment. PARTICIPANTS: Two hundred sixty-seven community-living adults aged 70 to 88 randomly recruited through the electoral roll. MEASUREMENTS: Performance on a standardized measure of driving performance. RESULTS: Lane positioning, approach, and blind spot monitoring were the most common error types, and errors occurred most frequently in situations involving merging and maneuvering. Drivers reporting more retrospective or prospective crashes made significantly more driving errors. Driver instructor interventions during self-navigation (where the instructor had to brake or take control of the steering to avoid an accident) were significantly associated with higher retrospective and prospective crashes; every instructor intervention almost doubled prospective crash risk. CONCLUSION: These findings suggest that on-road driving assessment provides useful information on older driver difficulties, with the self-directed component providing the most valuable information.
Resumo:
This paper proposes an alternative way of understanding China’s emergence, drawing on the idea of the creative industries. It looks at China’s embrace of the idea of cultural and creative industries and argues that this paradigm demonstrates that structures of domination (i.e. the commanding heights of political economy exemplified in political economy of the media) are being replaced by geographical development initiatives, mostly led by local governments and councils. In this decentralisation of power we find the seedlings of a more open and democratic society.
Resumo:
Traffic safety is a major concern world-wide. It is in both the sociological and economic interests of society that attempts should be made to identify the major and multiple contributory factors to those road crashes. This paper presents a text mining based method to better understand the contextual relationships inherent in road crashes. By examining and analyzing the crash report data in Queensland from year 2004 and year 2005, this paper identifies and reports the major and multiple contributory factors to those crashes. The outcome of this study will support road asset management in reducing road crashes.
Resumo:
Precise, up-to-date and increasingly detailed road maps are crucial for various advanced road applications, such as lane-level vehicle navigation, and advanced driver assistant systems. With the very high resolution (VHR) imagery from digital airborne sources, it will greatly facilitate the data acquisition, data collection and updates if the road details can be automatically extracted from the aerial images. In this paper, we proposed an effective approach to detect road lane information from aerial images with employment of the object-oriented image analysis method. Our proposed algorithm starts with constructing the DSM and true orthophotos from the stereo images. The road lane details are detected using an object-oriented rule based image classification approach. Due to the affection of other objects with similar spectral and geometrical attributes, the extracted road lanes are filtered with the road surface obtained by a progressive two-class decision classifier. The generated road network is evaluated using the datasets provided by Queensland department of Main Roads. The evaluation shows completeness values that range between 76% and 98% and correctness values that range between 82% and 97%.
Resumo:
This paper reports on the development of specifications for an on-board mass monitoring (OBM) application for regulatory requirements in Australia. An earlier paper reported on feasibility study and pilot testing program prior to the specification development [1]. Learnings from the pilot were used to refine this testing process and a full scale testing program was conducted from July to October 2008. The results from the full scale test and evidentiary implications are presented in this report. The draft specification for an evidentiary on-board mass monitoring application is currently under development.
Resumo:
Motor vehicles are a major source of gaseous and particulate matter pollution in urban areas, particularly of ultrafine sized particles (diameters < 0.1 µm). Exposure to particulate matter has been found to be associated with serious health effects, including respiratory and cardiovascular disease, and mortality. Particle emissions generated by motor vehicles span a very broad size range (from around 0.003-10 µm) and are measured as different subsets of particle mass concentrations or particle number count. However, there exist scientific challenges in analysing and interpreting the large data sets on motor vehicle emission factors, and no understanding is available of the application of different particle metrics as a basis for air quality regulation. To date a comprehensive inventory covering the broad size range of particles emitted by motor vehicles, and which includes particle number, does not exist anywhere in the world. This thesis covers research related to four important and interrelated aspects pertaining to particulate matter generated by motor vehicle fleets. These include the derivation of suitable particle emission factors for use in transport modelling and health impact assessments; quantification of motor vehicle particle emission inventories; investigation of the particle characteristic modality within particle size distributions as a potential for developing air quality regulation; and review and synthesis of current knowledge on ultrafine particles as it relates to motor vehicles; and the application of these aspects to the quantification, control and management of motor vehicle particle emissions. In order to quantify emissions in terms of a comprehensive inventory, which covers the full size range of particles emitted by motor vehicle fleets, it was necessary to derive a suitable set of particle emission factors for different vehicle and road type combinations for particle number, particle volume, PM1, PM2.5 and PM1 (mass concentration of particles with aerodynamic diameters < 1 µm, < 2.5 µm and < 10 µm respectively). The very large data set of emission factors analysed in this study were sourced from measurement studies conducted in developed countries, and hence the derived set of emission factors are suitable for preparing inventories in other urban regions of the developed world. These emission factors are particularly useful for regions with a lack of measurement data to derive emission factors, or where experimental data are available but are of insufficient scope. The comprehensive particle emissions inventory presented in this thesis is the first published inventory of tailpipe particle emissions prepared for a motor vehicle fleet, and included the quantification of particle emissions covering the full size range of particles emitted by vehicles, based on measurement data. The inventory quantified particle emissions measured in terms of particle number and different particle mass size fractions. It was developed for the urban South-East Queensland fleet in Australia, and included testing the particle emission implications of future scenarios for different passenger and freight travel demand. The thesis also presents evidence of the usefulness of examining modality within particle size distributions as a basis for developing air quality regulations; and finds evidence to support the relevance of introducing a new PM1 mass ambient air quality standard for the majority of environments worldwide. The study found that a combination of PM1 and PM10 standards are likely to be a more discerning and suitable set of ambient air quality standards for controlling particles emitted from combustion and mechanically-generated sources, such as motor vehicles, than the current mass standards of PM2.5 and PM10. The study also reviewed and synthesized existing knowledge on ultrafine particles, with a specific focus on those originating from motor vehicles. It found that motor vehicles are significant contributors to both air pollution and ultrafine particles in urban areas, and that a standardized measurement procedure is not currently available for ultrafine particles. The review found discrepancies exist between outcomes of instrumentation used to measure ultrafine particles; that few data is available on ultrafine particle chemistry and composition, long term monitoring; characterization of their spatial and temporal distribution in urban areas; and that no inventories for particle number are available for motor vehicle fleets. This knowledge is critical for epidemiological studies and exposure-response assessment. Conclusions from this review included the recommendation that ultrafine particles in populated urban areas be considered a likely target for future air quality regulation based on particle number, due to their potential impacts on the environment. The research in this PhD thesis successfully integrated the elements needed to quantify and manage motor vehicle fleet emissions, and its novelty relates to the combining of expertise from two distinctly separate disciplines - from aerosol science and transport modelling. The new knowledge and concepts developed in this PhD research provide never before available data and methods which can be used to develop comprehensive, size-resolved inventories of motor vehicle particle emissions, and air quality regulations to control particle emissions to protect the health and well-being of current and future generations.
Resumo:
Motorised countries have more fatal road crashes in rural areas than in urban areas. In Australia, over two thirds of the population live in urban areas, yet approximately 55 percent of the road fatalities occur in rural areas (ABS, 2006; Tziotis, Mabbot, Edmonston, Sheehan & Dwyer, 2005). Road and environmental factors increase the challenges of rural driving, but do not fully account for the disparity. Rural drivers are less compliant with recommendations regarding the “fatal four” behaviours of speeding, drink driving, seatbelt non-use and fatigue, and the reasons for their lower apparent receptivity for road safety messages are not well understood. Countermeasures targeting driver behaviour that have been effective in reducing road crashes in urban areas have been less successful in rural areas (FORS, 1995). However, potential barriers to receptivity for road safety information among rural road users have not been systematically investigated. This thesis aims to develop a road safety countermeasure that addresses three areas that potentially affect receptivity to rural road safety information. The first is psychological barriers of road users’ attitudes, including risk evaluation, optimism bias, locus of control and readiness to change. A second area is the timing and method of intervention delivery, which includes the production of a brief intervention and the feasibility of delivering it at a “teachable moment”. The third area under investigation is the content of the brief intervention. This study describes the process of developing an intervention that includes content to address road safety attitudes and improve safety behaviours of rural road users regarding the “fatal four”. The research commences with a review of the literature on rural road crashes, brief interventions, intervention design and implementation, and potential psychological barriers to receptivity. This literature provides a rationale for the development of a brief intervention for rural road safety with a focus on driver attitudes and behaviour. The research is then divided into four studies. The primary aim of Study One and Study Two is to investigate the receptivity of rural drivers to road safety interventions, with a view to identifying barriers to the efficacy of these strategies.
Resumo:
Road and highway infrastructure provides the backbone for a nation's economic growth. The versatile dispersion of population in Australia, from sparsely settled communities in remote areas to regenerated inner city suburbs with high density living in metropolitans, calls for continuing development and improvement on roads infrastructure under the current federal government policies and state governments' strategic plans. As road infrastructure projects involve large resources and mechanism, achieving sustainability not only in economic scales but also through environmental and social responsibility becomes a crucial issue. Current efforts are often impeded by different interpretation on sustainability agenda by stakeholders involved in these types of projects. As a result, sustainability deliverables at the project level is not often as transparent and measurable, compared to promises in project briefs and designs. This paper reviews the past studies on sustainable infrastructure construction, focusing on roads and highway projects. Through literature study and consultation with the industry, key sustainability indicators specific to road infrastructure projects have been identified. Based on these findings, this paper introduces an on-going research project aimed at identifying and integrating the different perceptions and priority needs of the stakeholders, and issues that impact on the gap between sustainability foci and its actual realization at project end level. The exploration helps generate an integrated decision-making model for sustainable road infrastructure projects. The research will promote to the industry more systematic and integrated approaches to decision-making on the implementation of sustainability strategies to achieve deliverable goals throughout the development and delivery process of road infrastructure projects in Australia.
Resumo:
Road features extraction from remote sensed imagery has been a long-term topic of great interest within the photogrammetry and remote sensing communities for over three decades. The majority of the early work only focused on linear feature detection approaches, with restrictive assumption on image resolution and road appearance. The widely available of high resolution digital aerial images makes it possible to extract sub-road features, e.g. road pavement markings. In this paper, we will focus on the automatic extraction of road lane markings, which are required by various lane-based vehicle applications, such as, autonomous vehicle navigation, and lane departure warning. The proposed approach consists of three phases: i) road centerline extraction from low resolution image, ii) road surface detection in the original image, and iii) pavement marking extraction on the generated road surface. The proposed method was tested on the aerial imagery dataset of the Bruce Highway, Queensland, and the results demonstrate the efficiency of our approach.
Resumo:
With the increasing resolution of remote sensing images, road network can be displayed as continuous and homogeneity regions with a certain width rather than traditional thin lines. Therefore, road network extraction from large scale images refers to reliable road surface detection instead of road line extraction. In this paper, a novel automatic road network detection approach based on the combination of homogram segmentation and mathematical morphology is proposed, which includes three main steps: (i) the image is classified based on homogram segmentation to roughly identify the road network regions; (ii) the morphological opening and closing is employed to fill tiny holes and filter out small road branches; and (iii) the extracted road surface is further thinned by a thinning approach, pruned by a proposed method and finally simplified with Douglas-Peucker algorithm. Lastly, the results from some QuickBird images and aerial photos demonstrate the correctness and efficiency of the proposed process.
Resumo:
Accurate road lane information is crucial for advanced vehicle navigation and safety applications. With the increasing of very high resolution (VHR) imagery of astonishing quality provided by digital airborne sources, it will greatly facilitate the data acquisition and also significantly reduce the cost of data collection and updates if the road details can be automatically extracted from the aerial images. In this paper, we proposed an effective approach to detect road lanes from aerial images with employment of the image analysis procedures. This algorithm starts with constructing the (Digital Surface Model) DSM and true orthophotos from the stereo images. Next, a maximum likelihood clustering algorithm is used to separate road from other ground objects. After the detection of road surface, the road traffic and lane lines are further detected using texture enhancement and morphological operations. Finally, the generated road network is evaluated to test the performance of the proposed approach, in which the datasets provided by Queensland department of Main Roads are used. The experiment result proves the effectiveness of our approach.