149 resultados para polarization holographic optical recording
Resumo:
We present a preparation procedure for small sized biocompatibly coated Ag nanoparticles with tunable surface plasmon resonances. The conditions were optimised with respect to the resonance Raman signal enhancement of heme proteins and to the preservation of the native protein structure....
Resumo:
Purpose: We term the visual field position from which the pupil appears most nearly circular as the pupillary circular axis (PCAx). The aim was to determine and compare the horizontal and vertical co-ordinates of the PCAx and optical axis from pupil shape and refraction information for only the horizontal meridian of the visual field. Method: The PCAx was determined from the changes with visual field angle in the ellipticity and orientation of pupil images out to ±90° from fixation along the horizontal meridian for the right eyes of 30 people. This axis was compared with the optical axis determined from the changes in the astigmatic components of the refractions for field angles out to ±35° in the same meridian. Results: The mean estimated horizontal and vertical field coordinates of the PCAx were (‒5.3±1.9°, ‒3.2±1.5°) compared with (‒4.8±5.1°, ‒1.5±3.4°) for the optical axis. The vertical co-ordinates of the two axes were just significantly different (p =0.03) but there was no significant correlation between them. Only the horizontal coordinate of the PCAx was significantly related to the refraction in the group. Conclusion: On average, the PCAx is displaced from the line-of-sight by about the same angle as the optical axis but there is more inter-subject variation in the position of the optical axis. When modelling the optical performance of the eye, it appears reasonable to assume that the pupil is circular when viewed along the line-of-sight.
Resumo:
Using a broad‐band recording system (150 Hz‐100 kHz) the echolocation calls of the lesser short‐tailed bat (Mystacina tuberculata) were recorded under three very different situations: free‐flying, flying within a flight cage, and on release from the hand. Calls of bats landing and feeding on a platform in Wellington Zoo were also recorded. Both the lowest frequency and frequency of peak amplitude of calls were significantly affected by the situation under which calls were recorded. Although the calls of free‐flying bats are different from those produced by bats foraging on the ground, it is unlikely that M. tuberculata uses echolocation to locate prey on the ground. No significant differences could be found between the calls emitted by male and female bats, and no consistent relationships were obvious between temporal and spectral call characteristics. There was some evidence to suggest that individual bats could be identified by their echolocation calls.
Resumo:
Ornithologists have been exploring the possibilities and the methodology of recording and archiving animal sounds for many decades. Primatologists, however, have only relatively recently become aware that recordings of primate sound may be just as valuable as traditional scientific specimens such as skins or skeletons, and should be preserved for posterity (Fig. 16.1). Audio recordings should be fully documented, archived and curated to ensure proper care and accessibility. As natural populations disappear, sound archives will become increasingly important (Bradbury et al., 1999). Studying animal vocal communication is also relevant from the perspective of behavioural ecology. Vocal communication plays a central role in animal societies. Calls are believed to provide various types and amounts of information. These may include, among other things: (1) information about the sender's identity (e.g. species, sex, age class, group membership or individual identity); (2) information about the sender's status andmood (e.g. dominance, fear or aggressive motivation, fitness); and (3) information about relevant events or discoveries in the sender's environment (e.g. predators, food location). When studying acoustic communication, sound recordings are usually required to analyse the spectral and temporal structure of vocalizations or to perform playback experiments (Chapter 11)...
Resumo:
Abstract: A strategy that is often used for designing low band gap polymers involves the incorporation of electron-rich (donor) and electron-deficient (acceptor) conjugated segments within the polymer backbone. In this paper we investigate such a series of Diketopyrrolopyrrole (DPP)-based co-polymers. The co-polymers consisted of a DPP unit attached to a phenylene, naphthalene, or anthracene unit. Additionally, polymers utilizing either the thiophene-flanked DPP or the furan-flanked DPP units paired with the naphthalene comonomer were compared. As these polymers have been used as donor materials and subsequent hole transporting materials in organic solar cells, we are specifically interested in characterizing the optical absorption of the hole polaron of these DPP based copolymers. We employ chemical doping, electrochemical doping, and photoinduced absorption (PIA) studies to probe the hole polaron absorption spectra. While some donor-acceptor polymers have shown an appreciable capacity to generate free charge carriers upon photoexcitation, no polaron signal was observed in the PIA spectrum of the polymers in this study. The relations between molecular structure and optical properties are discussed. Keywords: organic solar cell; organic photovoltaic; diketopyrrolopyrrole; chemical doping; spectroelectrochemistry; photoinduced absorption; hole polaron
Resumo:
We propose the use of optical flow information as a method for detecting and describing changes in the environment, from the perspective of a mobile camera. We analyze the characteristics of the optical flow signal and demonstrate how robust flow vectors can be generated and used for the detection of depth discontinuities and appearance changes at key locations. To successfully achieve this task, a full discussion on camera positioning, distortion compensation, noise filtering, and parameter estimation is presented. We then extract statistical attributes from the flow signal to describe the location of the scene changes. We also employ clustering and dominant shape of vectors to increase the descriptiveness. Once a database of nodes (where a node is a detected scene change) and their corresponding flow features is created, matching can be performed whenever nodes are encountered, such that topological localization can be achieved. We retrieve the most likely node according to the Mahalanobis and Chi-square distances between the current frame and the database. The results illustrate the applicability of the technique for detecting and describing scene changes in diverse lighting conditions, considering indoor and outdoor environments and different robot platforms.
Resumo:
Nanoporous Nb2O5 has been previously demonstrated to be a viable electrochromic material with strong intercalation characteristics. Despite showing such promising properties, its potential for optical gas sensing applications, which involves the production of ionic species such as H+, has yet to be explored. Nanoporous Nb2O5 can accommodate a large amount of H+ ions in a process that results in an energy bandgap change of the material, which induces an optical response. Here, we demonstrate the optical hydrogen gas (H¬2) sensing capability of nanoporous anodic Nb2O5 with a large surface-to-volume ratio prepared via a high temperature anodization method. The large active surface area of the film provides enhanced pathways for efficient hydrogen adsorption and dissociation, which are facilitated by a thin layer of Pt catalyst. We show that the process of H2 sensing causes optical modulations that are investigated in terms of response magnitudes and dynamics. The optical modulations induced by the intercalation process and sensing properties of nanoporous anodic Nb2O5 shown in this work can potentially be used for future optical gas sensing systems.
Resumo:
In this paper we propose a novel approach to multi-action recognition that performs joint segmentation and classification. This approach models each action using a Gaussian mixture using robust low-dimensional action features. Segmentation is achieved by performing classification on overlapping temporal windows, which are then merged to produce the final result. This approach is considerably less complicated than previous methods which use dynamic programming or computationally expensive hidden Markov models (HMMs). Initial experiments on a stitched version of the KTH dataset show that the proposed approach achieves an accuracy of 78.3%, outperforming a recent HMM-based approach which obtained 71.2%.
Resumo:
Background Serum lutein (L) and zeaxanthin (Z) positively correlate with macular pigment optical density (MPOD), hence the latter is a valuable indirect tool for measuring L and Z content in the macula. L and Z have been attributed antioxidant capacity and protection from certain retinal diseases but their uptake within the eye is thought to depend on genetic, age and environmental factors. In particular gene variants within beta-carotene monooxygenase (BCMO1) are thought to modulate MPOD in the macula. Objectives: To determine the effect of BCMO1 single nucleotide polymorphisms (SNPs) rs11645428, rs6420424 and rs6464851 on macular pigment optical density (MPOD) in a cohort of young healthy participants of Caucasian origin with normal ocular health. Design In this cohort study, MPOD was assessed in 46 healthy participants (22 male and 24 female) with a mean age of 24 ± 4.0 years (range 19-33). The three SNPs, rs11645428, rs6420424, rs6564851 that have established associations with MPOD were determined using MassEXTEND (hME) Sequenom assay. One-way analysis of variance (ANOVA) was performed on groups segregated into homozygous and heterozygous BCMO1 genotypes. Correlations between body mass index (BMI), iris colour, gender, central retinal thickness (CRT), diet and MPOD were investigated. Results MPOD did not significantly vary with BCMO1 rs11645428 (F2,41 = 0.700, p = 0.503), rs6420424 (F2,41 = 0.210, p = 0.801) nor rs6464851 homozygous or heterozygous genotypes (F2,41 = 0,13, p = 0.88), in this young healthy cohort. The combination of these three SNPs into triple genotypes based on plasma conversion efficiency did not affect MPOD (F2,41 = 0.07, p = 0.9). There was a significant negative correlation with MPOD and central retinal thickness (r = - 0.39, p = 0.01) but no significant correlation between BMI, iris colour, gender and MPOD. Conclusion Our results indicate that macular pigment deposition within the central retina is not dependent on BCMO1 gene variants in young healthy people. We propose that MPOD is saturated in younger persons and/or other gene variant combinations determine its deposition.
A LIN inspired optical bus for signal isolation in multilevel or modular power electronic converters
Resumo:
Proposed in this paper is a low-cost, half-duplex optical communication bus for control signal isolation in modular or multilevel power electronic converters. The concept is inspired by the Local Interconnect Network (LIN) serial network protocol as used in the automotive industry. The proposed communications bus utilises readily available optical transceivers and is suitable for use with low-cost microcontrollers for distributed control of multilevel converters. As a signal isolation concept, the proposed optical bus enables very high cell count modular multilevel cascaded converters (MMCCs) for high-bandwidth, high-voltage and high-power applications. Prototype hardware is developed and the optical bus concept is validated experimentally in a 33-level MMCC converter operating at 120 Vrms and 60 Hz.
Resumo:
Graphitic like layered materials exhibit intriguing electronic structures and thus the search for new types of two-dimensional (2D) monolayer materials is of great interest for developing novel nano-devices. By using density functional theory (DFT) method, here we for the first time investigate the structure, stability, electronic and optical properties of monolayer lead iodide (PbI2). The stability of PbI2 monolayer is first confirmed by phonon dispersion calculation. Compared to the calculation using generalized gradient approximation, screened hybrid functional and spin–orbit coupling effects can not only predicts an accurate bandgap (2.63 eV), but also the correct position of valence and conduction band edges. The biaxial strain can tune its bandgap size in a wide range from 1 eV to 3 eV, which can be understood by the strain induced uniformly change of electric field between Pb and I atomic layer. The calculated imaginary part of the dielectric function of 2D graphene/PbI2 van der Waals type hetero-structure shows significant red shift of absorption edge compared to that of a pure monolayer PbI2. Our findings highlight a new interesting 2D material with potential applications in nanoelectronics and optoelectronics.
Resumo:
Purpose To develop a signal processing paradigm for extracting ERG responses to temporal sinusoidal modulation with contrasts ranging from below perceptual threshold to suprathreshold contrasts. To estimate the magnitude of intrinsic noise in ERG signals at different stimulus contrasts. Methods Photopic test stimuli were generated using a 4-primary Maxwellian view optical system. The 4-primary lights were sinusoidally temporally modulated in-phase (36 Hz; 2.5 - 50% Michelson). The stimuli were presented in 1 s epochs separated by a 1 ms blank interval and repeated 160 times (160.16 s duration) during the recording of the continuous flicker ERG from the right eye using DTL fiber electrodes. After artefact rejection, the ERG signal was extracted using Fourier methods in each of the 1 s epochs where a stimulus was presented. The signal processing allows for computation of the intrinsic noise distribution in addition to the signal to noise (SNR) ratio. Results We provide the initial report that the ERG intrinsic noise distribution is independent of stimulus contrast whereas SNR decreases linearly with decreasing contrast until the noise limit at ~2.5%. The 1ms blank intervals between epochs de-correlated the ERG signal at the line frequency (50 Hz) and thus increased the SNR of the averaged response. We confirm that response amplitude increases linearly with stimulus contrast. The phase response shows a shallow positive relationship with stimulus contrast. Conclusions This new technique will enable recording of intrinsic noise in ERG signals above and below perceptual visual threshold and is suitable for measurement of continuous rod and cone ERGs across a range of temporal frequencies, and post-receptoral processing in the primary retinogeniculate pathways at low stimulus contrasts. The intrinsic noise distribution may have application as a biomarker for detecting changes in disease progression or treatment efficacy.