328 resultados para news flow
Resumo:
The hydrodynamic behaviour of a novel flat plate photocatalytic reactor for water treatment is investigated using CFD code FLUENT. The reactor consists of a reactive section that features negligible pressure drop and uniform illumination of the photocatalyst to ensure enhanced photocatalytic efficiency. The numerical simulations allowed the identification of several design issues in the original reactor, which include extensive boundary layer separation near the photocatalyst support and regions of flow recirculation that render a significant portion of the reactive area. The simulations reveal that this issue could be addressed by selecting the appropriate inlet positions and configurations. This modification can cause minimal pressure drop across the reactive zone and achieves significant uniformization of the tested pollutant on the photocatalyst surface. The influence of roughness elements type has also been studied with a view to identify their role on the distribution of pollutant concentration on the photocatalyst surface. The results presented here indicate that the flow and pollutant concentration field strongly depend on the geometric parameters and flow conditions.
Resumo:
In this study a new immobilized flat plate photocatalytic reactor for wastewater treatment has been investigated using computational fluid dynamics (CFD). The reactor consists of a reactor inlet, a reactive section where the catalyst is coated, and outlet parts. For simulation, the reactive section of the reactor was modelled with an array of baffles. In order to optimize the fluid mixing and reactor design, this study attempts to investigate the influence of baffles with differing heights on the flow field of the flat plate reactor. The results obtained from the simulation of a baffled flat plate reactor hydrodynamics for differing baffle heights for certain positions are presented. Under the conditions simulated, the qualitative flow features, such as the distribution of local stream lines, velocity contours, and high shear region, boundary layers separation, vortex formation, and the underlying mechanism are examined. At low and high Re numbers, the influence of baffle heights on the distribution of species mass fraction of a model pollutant are also highlighted. The simulation of qualitative and quantitative properties of fluid dynamics in a baffled reactor provides valuable insight to fully understand the effect of baffles and their role on the flow pattern, behaviour, and features of wastewater treatment using a photocatalytic reactor.
Resumo:
The journalism revolution is upon us. In a world where we are constantly being told that everyone can be a publisher and challenges are emerging from bloggers, Twitterers and podcasters, journalism educators are inevitably reassessing what skills we now need to teach to keep our graduates ahead of the game. QUT this year tackled that question head-on as a curriculum review and program restructure resulted in a greater emphasis on online journalism. The author spent a week in the online newsrooms of each of two of the major players – ABC online news and thecouriermail.com to watch, listen and interview some of the key players. This, in addition to interviews with industry leaders from Fairfax and news.com, lead to the conclusion that while there are some new skills involved in new media much of what the industry is demanding is in fact good old fashioned journalism. Themes of good spelling, grammar, accuracy and writing skills and a nose for news recurred when industry players were asked what it was that they would like to see in new graduates. While speed was cited as one of the big attributes needed in online journalism, the conclusion of many of the players was that the skills of a good down-table sub or a journalist working for wire service were not unlike those most used in online newsrooms.
Resumo:
New technologies have the potential to both expose children to and protect them from television news footage likely to disturb or frighten. The advent of cheap, portable and widely available digital technology has vastly increased the possibility of violent news events being captured and potentially broadcast. This material has the potential to be particularly disturbing and harmful to young children. But on the flipside, available digital technology could be used to build in protection for young viewers especially when it comes to preserving scheduled television programming and guarding against violent content being broadcast during live crosses from known trouble spots. Based on interviews with news directors, parents and a review of published material two recommendations are put forward: 1. Digital television technology should be employed to prevent news events "overtaking" scheduled children's programming and to protect safe harbours placed in the classifications zones to protect children. 2. Broadcasters should regain control of the images that go to air during "live" feeds from obviously volatile situations by building in short delays in G classification zones.
Resumo:
This short article explores the ways in which the news media's reporting about Indigenous Australians can be improved. The article looks at how journalists predominantly portray Indigenous people in vulnerable circumstances. Journalists also often misrepresent Indigenous Australians in ways that can potentially harm individuals and communities. In forums about the media, it is common to hear Indigenous people say that they ignore non-Indigenous news services due to such problems, and they rely on community media instead. Even so, the non-Indigenous media has a huge impact on public understanding and government policies, which directly influence the living conditions of Indigenous people. Thus it remains important to consider how the performance of non-Indigenous media can be improved, and the article discusses the steps that are needed if this is to happen.
Resumo:
Newspapers and, if to a lesser extent as yet, linear broadcast news providers on TV and radio are in the process of being replaced as the dominant carrier media of journalism by an emerging network of online outlets.
Resumo:
The effect of radiation on natural convection flow from an isothermal circular cylinder has been investigated numerically in this study. The governing boundary layer equations of motion are transformed into a non-dimensional form and the resulting nonlinear systems of partial differential equations are reduced to convenient boundary layer equations, which are then solved numerically by two distinct efficient methods namely: (i) implicit finite differencemethod or the Keller-Box Method (KBM) and (ii) Straight Forward Finite Difference Method (SFFD). Numerical results are presented by velocity and temperature distribution of the fluid as well as heat transfer characteristics, namely the shearing stress and the local heat transfer rate in terms of the local skin-friction coefficient and the local Nusselt number for a wide range of surface heating parameter and radiation-conduction parameter. Due to the effects of the radiation the skin-friction coefficients as well as the rate of heat transfer increased and consequently the momentum and thermal boundary layer thickness enhanced.
Resumo:
The effect of thermal radiation on a steady two-dimensional natural convection laminar flow of viscous incompressible optically thick fluid along a vertical flat plate with streamwise sinusoidal surface temperature has been investigated in this study. Using the appropriate variables; the basic governing equations are transformed to convenient form and then solved numerically employing two efficient methods, namely, Implicit finite difference method (IFD) together with Keller box scheme and Straight forward finite difference (SFFD) method. Effects of the variation of the physical parameters, for example, conduction-radiation parameter (Planck number), surface temperature parameter, and the amplitude of the surface temperature, are shown on the skin friction and heat transfer rate quantitatively are shown numerically. Velocity and temperature profiles as well as streamlines and isotherms are also presented and discussed for the variation of conduction-radiation parameter. It is found that both skin-friction and rate of heat transfer are enhanced considerably by increasing the values of conduction radiation parameter, Rd.
Resumo:
Laminar magnetohydrodynamic (MHD) natural convection flow from an isothermal sphere immersed in a fluid with viscosity proportional to linear function of temperature has been studied. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equations are reduced to convenient form which are solved numerically by two very efficient methods, namely, (i) Implicit finite difference method together with Keller box scheme and (ii) Direct numerical scheme. Numerical results are presented by velocity and temperature distribution, streamlines and isotherms of the fluid as well as heat transfer characteristics, namely the local skin-friction coefficients and the local heat transfer rate for a wide range of magnetohydrodynamic paramagnet and viscosity-variation parameter.
Resumo:
We present here a numerical study of laminar doubly diffusive free convection flows adjacent to a vertical surface in a stable thermally stratified medium. The governing equations of mass, momentum, energy and species are non-dimensionalized. These equations have been solved by using an implicit finite difference method and local non-similarity method. The results show many interesting aspects of complex interaction of the two buoyant mechanisms that have been shown in both the tabular as well as graphical form.
Resumo:
Physiological pulsatile flow in a 3D model of arterial double stenosis, using the modified Power-law blood viscosity model, is investigated by applying Large Eddy Simulation (LES) technique. The computational domain has been chosen is a simple channel with biological type stenoses. The physiological pulsation is generated at the inlet of the model using the first four harmonics of the Fourier series of the physiological pressure pulse. In LES, a top-hat spatial grid-filter is applied to the Navier-Stokes equations of motion to separate the large scale flows from the subgrid scale (SGS). The large scale flows are then resolved fully while the unresolved SGS motions are modelled using the localized dynamic model. The flow Reynolds numbers which are typical of those found in human large artery are chosen in the present work. Transitions to turbulent of the pulsatile non-Newtonian along with Newtonian flow in the post stenosis are examined through the mean velocity, wall shear stress, mean streamlines as well as turbulent kinetic energy and explained physically along with the relevant medical concerns.