171 resultados para movement coordination
Resumo:
Opposition to men’s violence against women who are their intimate partners has become politically popular in the United States. The Violence Against Women Act (VAWA) has enjoyed broad-based support for over 15 years. VAWA has been refined and expanded with each reauthorization. Resistance to the battered women’s movement is often overlooked in this political context. However, woman abuse and state responses to it are mired in cultural tensions about crime, law, gender, economics, scholarship, and the family. Based on interviews with 35 advocates in the United States, this paper outlines key tactics of antifeminist backlash against the battered women’s movement.
Resumo:
The structures of the hydrated sodium salts of 4-chloro-3-nitrobenzoic acid {poly[aqua(μ4-4-chloro-3-nitrobenzoato)sodium(I)], [Na(C7H3ClNO4)(H2O)]n, (I)} and 2-amino-4-nitrobenzoic acid {poly[μ-aqua-aqua(μ3-2-amino-4-nitrobenzoato)sodium(I)], [Na(C7H5N2O4)(H2O)2]n, (II)}, and the hydrated potassium salt of 2-amino-4-nitrobenzoic acid {poly[μ-aqua-aqua(μ5-2-amino-4-nitrobenzoato)potassium(I)], [K(C7H5N2O4)(H2O)]n, (III)} have been determined and their complex polymeric structures described. All three structures are stabilized by intra- and intermolecular hydrogen bonding and strong π–π ring interactions. In the structure of (I), the distorted trigonal bipyrimidal NaO5 coordination polyhedron comprises a monodentate water molecule and four bridging carboxylate O-atom donors, generating a two-dimensional polymeric structure lying parallel to (001). Intra-layer hydrogen-bonding associations and strong inter-ring π–π interactions are present. Structure (II) has a distorted octahedral NaO6 stereochemistry, with four bridging O-atom donors, two from a single carboxylate group and two from a single nitro group and three from the two water molecules, one of which is bridging. Na centres are linked through centrosymmetric four-membered duplex water bridges and through 18-membered duplex head-to-tail ligand bridges. Similar centrosymmetric bridges are found in the structure of (III), and in both (II) and (III) strong inter-ring π–π interactions are found. A two-dimensional layered structure lying parallel to (010) is generated in (II), whereas in (III) the structure is three-dimensional. With (III), the irregular KO7 coordination polyhedron comprises a doubly bridging water molecule, a single bidentate bridging carboxylate O-atom donor and three bridging O-atom donors from the two nitro groups. A three-dimensional structure is generated. These coordination polymer structures are among the few examples of metal complexes of any type with either 4-chloro-3-nitrobenzoic acid or 4-nitroanthranilic acid.
Resumo:
Robots currently recognise and use objects through algorithms that are hand-coded or specifically trained. Such robots can operate in known, structured environments but cannot learn to recognise or use novel objects as they appear. This thesis demonstrates that a robot can develop meaningful object representations by learning the fundamental relationship between action and change in sensory state; the robot learns sensorimotor coordination. Methods based on Markov Decision Processes are experimentally validated on a mobile robot capable of gripping objects, and it is found that object recognition and manipulation can be learnt as an emergent property of sensorimotor coordination.
Resumo:
Dissociable processes for conscious perception (“what” processing) and guidance of action (“how” processing) have been identified in visual, auditory, and somatosensory systems. The present study was designed to find similar dissociation within whole-body movements in which the presence of vestibular information creates a unique perceptual condition. In two experiments, blindfolded participants walked along a linear path and specified the walked distance by verbally estimating it (“what” measure) and by pulling a length of tape that matched the walked distance (“how” measure). Although these two measures yielded largely comparable responses under a normal walking condition, variability in verbal estimates showed a qualitatively different pattern from that in tape-pulling when sensory input into walking was altered by having participants wear a heavy backpack. This suggests that the “what” versus “how” dissociation exists in whole-body movements as well, supporting a claim that it is a general principle with which perceptual systems are organized.
Resumo:
This thesis was a step forward in extracting valuable features from human's movement behaviour in terms of space utilisation based on Media-Access-Control data. This research offered a low-cost and less computational complexity approach compared to existing human's movement tracking methods. This research was successfully applied in QUT's Gardens Point campus and can be scaled to bigger environments and societies. Extractable information from human's movement by this approach can add a significant value to studying human's movement behaviour, enhancing future urban and interior design, improving crowd safety and evacuation plans.
Resumo:
Objectives The aim of this position paper is to discuss the role of affect in designing learning experiences to enhance expertise acquisition in sport. The design of learning environments and athlete development programmes are predicated on the successful sampling and simulation of competitive performance conditions during practice. This premise is captured by the concept of representative learning design, founded on an ecological dynamics approach to developing skill in sport, and based on the individual-environment relationship. In this paper we discuss how the effective development of expertise in sport could be enhanced by the consideration of affective constraints in the representative design of learning experiences. Conclusions Based on previous theoretical modelling and practical examples we delineate two key principles of Affective Learning Design: (i) the design of emotion-laden learning experiences that effectively simulate the constraints of performance environments in sport; (ii) recognising individualised emotional and coordination tendencies that are associated with different periods of learning. Considering the role of affect in learning environments has clear implications for how sport psychologists, athletes and coaches might collaborate to enhance the acquisition of expertise in sport.
Resumo:
Bone morphogen proteins (BMPs) are distributed along a dorsal-ventral (DV) gradient in many developing embryos. The spatial distribution of this signaling ligand is critical for correct DV axis specification. In various species, BMP expression is spatially localized, and BMP gradient formation relies on BMP transport, which in turn requires interactions with the extracellular proteins Short gastrulation/Chordin (Chd) and Twisted gastrulation (Tsg). These binding interactions promote BMP movement and concomitantly inhibit BMP signaling. The protease Tolloid (Tld) cleaves Chd, which releases BMP from the complex and permits it to bind the BMP receptor and signal. In sea urchin embryos, BMP is produced in the ventral ectoderm, but signals in the dorsal ectoderm. The transport of BMP from the ventral ectoderm to the dorsal ectoderm in sea urchin embryos is not understood. Therefore, using information from a series of experiments, we adapt the mathematical model of Mizutani et al. (2005) and embed it as the reaction part of a one-dimensional reaction–diffusion model. We use it to study aspects of this transport process in sea urchin embryos. We demonstrate that the receptor-bound BMP concentration exhibits dorsally centered peaks of the same type as those observed experimentally when the ternary transport complex (Chd-Tsg-BMP) forms relatively quickly and BMP receptor binding is relatively slow. Similarly, dorsally centered peaks are created when the diffusivities of BMP, Chd, and Chd-Tsg are relatively low and that of Chd-Tsg-BMP is relatively high, and the model dynamics also suggest that Tld is a principal regulator of the system. At the end of this paper, we briefly compare the observed dynamics in the sea urchin model to a version that applies to the fly embryo, and we find that the same conditions can account for BMP transport in the two types of embryos only if Tld levels are reduced in sea urchin compared to fly.
Resumo:
Premise of the study: Plant invasiveness can be promoted by higher values of adaptive traits (e.g., photosynthetic capacity, biomass accumulation), greater plasticity and coordination of these traits, and by higher and positive relative influence of these functionalities on fitness, such as increasing reproductive output. However, the dataset for this premise rarely include linkages between epidermal-stomatal traits, leaf internal anatomy, and physiological performance. Methods: Three ecological pairs of invasive vs non-invasive (native) woody vine species of South-East Queensland, Australia were investigated for trait differences in leaf morphology and anatomy under varying light intensity. The linkages of these traits with physiological performance (e.g. water use efficiency, photosynthesis, and leaf construction cost) and plant adaptive traits of specific leaf area, biomass, and relative growth rates were also explored. Key results: Mean leaf anatomical trait differed significantly between the two groups, except for stomatal size. Plasticity of traits, and to a very limited extent, their phenotypic integration were higher in the invasive relative to the native species. ANOVA, ordination, and analysis of similarity suggest that for leaf morphology and anatomy, the three functional strategies contribute to the differences between the two groups in the order phenotypic plasticity > trait means > phenotypic integration. Conclusions: The linkages demonstrated in the study between stomatal complex/gross anatomy and physiology are scarce in the ecological literature of plant invasiveness, but the findings suggest that leaf anatomical traits need to be considered routinely as part of weed species assessment and in the worldwide leaf economic spectrum.
Resumo:
Editorial: This theme issue of BJSM presents key papers from the 3rd International Conference on Ambulatory Monitoring of Physical Activity and Movement (ICAMPAM). The July 2013 conference was hosted by the University of Massachusetts and was attended by researchers, clinicians, students and technology vendors for North America, Europe, Australasia and Asia...
Resumo:
Purpose: This study investigated the impact of simulated hyperopic anisometropia and sustained near work on performance of academic-related measures in children. Methods: Participants included 16 children (mean age: 11.1 ± 0.8 years) with minimal refractive error. Academic-related outcome measures included a reading test (Neale Analysis of Reading Ability), visual information processing tests (Coding and Symbol Search subtests from the Wechsler Intelligence Scale for Children) and a reading-related eye movement test (Developmental Eye Movement test). Performance was assessed with and without 0.75 D of imposed monocular hyperopic defocus (administered in a randomised order), before and after 20 minutes of sustained near work. Unilateral hyperopic defocus was systematically assigned to either the dominant or non-dominant sighting eye to evaluate the impact of ocular dominance on any performance decrements. Results: Simulated hyperopic anisometropia and sustained near work both independently reduced performance on all of the outcome measures (p<0.001). A significant interaction was also observed between simulated anisometropia and near work (p<0.05), with the greatest decrement in performance observed during simulated anisometropia in combination with sustained near work. Laterality of the refractive error simulation (ocular dominance) did not significantly influence the outcome measures (p>0.05). A reduction of up to 12% in performance was observed across the range of academic-related measures following sustained near work undertaken during the anisometropic simulation. Conclusion: Simulated hyperopic anisometropia significantly impaired academic–related performance, particularly in combination with sustained near work. The impact of uncorrected habitual anisometropia on academic-related performance in children requires further investigation.