265 resultados para methods: data analysis


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Genetic research of complex diseases is a challenging, but exciting, area of research. The early development of the research was limited, however, until the completion of the Human Genome and HapMap projects, along with the reduction in the cost of genotyping, which paves the way for understanding the genetic composition of complex diseases. In this thesis, we focus on the statistical methods for two aspects of genetic research: phenotype definition for diseases with complex etiology and methods for identifying potentially associated Single Nucleotide Polymorphisms (SNPs) and SNP-SNP interactions. With regard to phenotype definition for diseases with complex etiology, we firstly investigated the effects of different statistical phenotyping approaches on the subsequent analysis. In light of the findings, and the difficulties in validating the estimated phenotype, we proposed two different methods for reconciling phenotypes of different models using Bayesian model averaging as a coherent mechanism for accounting for model uncertainty. In the second part of the thesis, the focus is turned to the methods for identifying associated SNPs and SNP interactions. We review the use of Bayesian logistic regression with variable selection for SNP identification and extended the model for detecting the interaction effects for population based case-control studies. In this part of study, we also develop a machine learning algorithm to cope with the large scale data analysis, namely modified Logic Regression with Genetic Program (MLR-GEP), which is then compared with the Bayesian model, Random Forests and other variants of logic regression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aim. This paper elucidates the nature of metaphor and the conditions necessary to its use as an analytic device in qualitative research, and describes how the use of metaphor assisted in the analytic processes of a grounded theory study of nephrology nursing expertise. Background. The use of metaphor is pervasive in everyday thought, language and action. It is an important means for the comprehension and management of everyday life, and makes challenging or problematic concepts easier to explain. Metaphors are also pervasive in quantitative and qualitative research for the same reason. In both everyday life and in research, their use may be implicit or explicit. Methods. The study using grounded theory methodology took place in one renal unit in New South Wales, Australia between 1999 and 2000 and included six non-expert and 11 expert nurses. It involved simultaneous data collection and analysis using participant observation, semi-structured interviews and review of nursing documentation. Findings. A three stage skills-acquisitive process was identified in which an orchestral metaphor was used to explain the relationships between stages and to satisfactorily capture the data coded within each stage. Conclusion. Metaphors create images, clarify and add depth to meanings and, if used appropriately and explicitly in qualitative research, can capture data at highly conceptual levels. Metaphors also assist in explaining the relationship between findings in a clear and coherent manner. © 2005 Blackwell Publishing Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Online learning algorithms have recently risen to prominence due to their strong theoretical guarantees and an increasing number of practical applications for large-scale data analysis problems. In this paper, we analyze a class of online learning algorithms based on fixed potentials and nonlinearized losses, which yields algorithms with implicit update rules. We show how to efficiently compute these updates, and we prove regret bounds for the algorithms. We apply our formulation to several special cases where our approach has benefits over existing online learning methods. In particular, we provide improved algorithms and bounds for the online metric learning problem, and show improved robustness for online linear prediction problems. Results over a variety of data sets demonstrate the advantages of our framework.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper provides fundamental understanding for the use of cumulative plots for travel time estimation on signalized urban networks. Analytical modeling is performed to generate cumulative plots based on the availability of data: a) Case-D, for detector data only; b) Case-DS, for detector data and signal timings; and c) Case-DSS, for detector data, signal timings and saturation flow rate. The empirical study and sensitivity analysis based on simulation experiments have observed the consistency in performance for Case-DS and Case-DSS, whereas, for Case-D the performance is inconsistent. Case-D is sensitive to detection interval and signal timings within the interval. When detection interval is integral multiple of signal cycle then it has low accuracy and low reliability. Whereas, for detection interval around 1.5 times signal cycle both accuracy and reliability are high.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we present a sequential Monte Carlo algorithm for Bayesian sequential experimental design applied to generalised non-linear models for discrete data. The approach is computationally convenient in that the information of newly observed data can be incorporated through a simple re-weighting step. We also consider a flexible parametric model for the stimulus-response relationship together with a newly developed hybrid design utility that can produce more robust estimates of the target stimulus in the presence of substantial model and parameter uncertainty. The algorithm is applied to hypothetical clinical trial or bioassay scenarios. In the discussion, potential generalisations of the algorithm are suggested to possibly extend its applicability to a wide variety of scenarios

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Handling information overload online, from the user's point of view is a big challenge, especially when the number of websites is growing rapidly due to growth in e-commerce and other related activities. Personalization based on user needs is the key to solving the problem of information overload. Personalization methods help in identifying relevant information, which may be liked by a user. User profile and object profile are the important elements of a personalization system. When creating user and object profiles, most of the existing methods adopt two-dimensional similarity methods based on vector or matrix models in order to find inter-user and inter-object similarity. Moreover, for recommending similar objects to users, personalization systems use the users-users, items-items and users-items similarity measures. In most cases similarity measures such as Euclidian, Manhattan, cosine and many others based on vector or matrix methods are used to find the similarities. Web logs are high-dimensional datasets, consisting of multiple users, multiple searches with many attributes to each. Two-dimensional data analysis methods may often overlook latent relationships that may exist between users and items. In contrast to other studies, this thesis utilises tensors, the high-dimensional data models, to build user and object profiles and to find the inter-relationships between users-users and users-items. To create an improved personalized Web system, this thesis proposes to build three types of profiles: individual user, group users and object profiles utilising decomposition factors of tensor data models. A hybrid recommendation approach utilising group profiles (forming the basis of a collaborative filtering method) and object profiles (forming the basis of a content-based method) in conjunction with individual user profiles (forming the basis of a model based approach) is proposed for making effective recommendations. A tensor-based clustering method is proposed that utilises the outcomes of popular tensor decomposition techniques such as PARAFAC, Tucker and HOSVD to group similar instances. An individual user profile, showing the user's highest interest, is represented by the top dimension values, extracted from the component matrix obtained after tensor decomposition. A group profile, showing similar users and their highest interest, is built by clustering similar users based on tensor decomposed values. A group profile is represented by the top association rules (containing various unique object combinations) that are derived from the searches made by the users of the cluster. An object profile is created to represent similar objects clustered on the basis of their similarity of features. Depending on the category of a user (known, anonymous or frequent visitor to the website), any of the profiles or their combinations is used for making personalized recommendations. A ranking algorithm is also proposed that utilizes the personalized information to order and rank the recommendations. The proposed methodology is evaluated on data collected from a real life car website. Empirical analysis confirms the effectiveness of recommendations made by the proposed approach over other collaborative filtering and content-based recommendation approaches based on two-dimensional data analysis methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a strategy for delayed research method selection in a qualitative interpretivist research. An exemplary case details how explorative interviews were designed and conducted in accordance with a paradigm prior to deciding whether to adopt grounded theory or phenomenology for data analysis. The focus here is to determine the most appropriate research strategy in this case the methodological framing to conduct research and represent findings, both of which are detailed. Research addressing current management issues requires both a flexible framework and the capability to consider the research problem from various angles, to derive tangible results for academia with immediate application to business demands. Researchers, and in particular novices, often struggle to decide on an appropriate research method suitable to address their research problem. This often applies to interpretative qualitative research where it is not always immediately clear which is the most appropriate method to use, as the research objectives shift and crystallize over time. This paper uses an exemplary case to reveal how the strategy for delayed research method selection contributes to deciding whether to adopt grounded theory or phenomenology in the initial phase of a PhD research project. In this case, semi-structured interviews were used for data generation framed in an interpretivist approach, situated in a business context. Research questions for this study were thoroughly defined and carefully framed in accordance with the research paradigm‟s principles, while at the same time ensuring that the requirements of both potential research methods were met. The grounded theory and phenomenology methods were compared and contrasted to determine their suitability and whether they meet the research objectives based on a pilot study. The strategy proposed in this paper is an alternative to the more „traditional‟ approach, which initially selects the methodological formulation, followed by data generation. In conclusion, the suggested strategy for delayed research method selection intends to help researchers identify and apply the most appropriate method to their research. This strategy is based on explorations of data generation and analysis in order to derive faithful results from the data generated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As civil infrastructures such as bridges age, there is a concern for safety and a need for cost-effective and reliable monitoring tool. Different diagnostic techniques are available nowadays for structural health monitoring (SHM) of bridges. Acoustic emission is one such technique with potential of predicting failure. The phenomenon of rapid release of energy within a material by crack initiation or growth in form of stress waves is known as acoustic emission (AE). AEtechnique involves recording the stress waves bymeans of sensors and subsequent analysis of the recorded signals,which then convey information about the nature of the source. AE can be used as a local SHM technique to monitor specific regions with visible presence of cracks or crack prone areas such as welded regions and joints with bolted connection or as a global technique to monitor the whole structure. Strength of AE technique lies in its ability to detect active crack activity, thus helping in prioritising maintenance work by helping focus on active cracks rather than dormant cracks. In spite of being a promising tool, some challenges do still exist behind the successful application of AE technique. One is the generation of large amount of data during the testing; hence an effective data analysis and management is necessary, especially for long term monitoring uses. Complications also arise as a number of spurious sources can giveAEsignals, therefore, different source discrimination strategies are necessary to identify genuine signals from spurious ones. Another major challenge is the quantification of damage level by appropriate analysis of data. Intensity analysis using severity and historic indices as well as b-value analysis are some important methods and will be discussed and applied for analysis of laboratory experimental data in this paper.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Consider the concept combination ‘pet human’. In word association experiments, human subjects produce the associate ‘slave’ in relation to this combination. The striking aspect of this associate is that it is not produced as an associate of ‘pet’, or ‘human’ in isolation. In other words, the associate ‘slave’ seems to be emergent. Such emergent associations sometimes have a creative character and cognitive science is largely silent about how we produce them. Departing from a dimensional model of human conceptual space, this article will explore concept combinations, and will argue that emergent associations are a result of abductive reasoning within conceptual space, that is, below the symbolic level of cognition. A tensor-based approach is used to model concept combinations allowing such combinations to be formalized as interacting quantum systems. Free association norm data is used to motivate the underlying basis of the conceptual space. It is shown by analogy how some concept combinations may behave like quantum-entangled (non-separable) particles. Two methods of analysis were presented for empirically validating the presence of non-separable concept combinations in human cognition. One method is based on quantum theory and another based on comparing a joint (true theoretic) probability distribution with another distribution based on a separability assumption using a chi-square goodness-of-fit test. Although these methods were inconclusive in relation to an empirical study of bi-ambiguous concept combinations, avenues for further refinement of these methods are identified.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Previous research identified that primary brain tumour patients have significant psychological morbidity and unmet needs, particularly the need for more information and support. However, the utility of strategies to improve information provision in this setting is unknown. This study involved the development and piloting of a brain tumour specific question prompt list (QPL). A QPL is a list of questions patients may find useful to ask their health professionals, and is designed to facilitate communication and information exchange. Methods: Thematic analysis of QPLs developed for other chronic diseases and brain tumour specific patient resources informed a draft QPL. Subsequent refinement of the QPL involved an iterative process of interviews and review with 12 recently diagnosed patients and six caregivers. Final revisions were made following readability analyses and review by health professionals. Piloting of the QPL is underway using a non-randomised control group trial with patients undergoing treatment for a primary brain tumour in Brisbane, Queensland. Following baseline interviews, consenting participants are provided with the QPL or standard information materials. Follow-up interviews four to 6 weeks later allow assessment of the acceptability of the QPL, how it is used by patients, impact on information needs, and feasibility of recruitment, implementation and outcome assessment. Results: The final QPL was determined to be readable at the sixth grade level. It contains seven sections: diagnosis, prognosis, symptoms and changes, the health professional team, support, treatment and management, and post-treatment concerns. At this time, fourteen participants have been recruited for the pilot, and data collection completed for eleven. Data collection and preliminary analysis are expected to be completed by and presented at the conference. Conclusions: If acceptable to participants, the QPL may encourage patients, doctors and nurses to communicate more effectively, reducing unmet information needs and ultimately improving psychological wellbeing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Serving as a powerful tool for extracting localized variations in non-stationary signals, applications of wavelet transforms (WTs) in traffic engineering have been introduced; however, lacking in some important theoretical fundamentals. In particular, there is little guidance provided on selecting an appropriate WT across potential transport applications. This research described in this paper contributes uniquely to the literature by first describing a numerical experiment to demonstrate the shortcomings of commonly-used data processing techniques in traffic engineering (i.e., averaging, moving averaging, second-order difference, oblique cumulative curve, and short-time Fourier transform). It then mathematically describes WT’s ability to detect singularities in traffic data. Next, selecting a suitable WT for a particular research topic in traffic engineering is discussed in detail by objectively and quantitatively comparing candidate wavelets’ performances using a numerical experiment. Finally, based on several case studies using both loop detector data and vehicle trajectories, it is shown that selecting a suitable wavelet largely depends on the specific research topic, and that the Mexican hat wavelet generally gives a satisfactory performance in detecting singularities in traffic and vehicular data.