324 resultados para md
Resumo:
The state of the practice in safety has advanced rapidly in recent years with the emergence of new tools and processes for improving selection of the most cost-effective safety countermeasures. However, many challenges prevent fair and objective comparisons of countermeasures applied across safety disciplines (e.g. engineering, emergency services, and behavioral measures). These countermeasures operate at different spatial scales, are funded often by different financial sources and agencies, and have associated costs and benefits that are difficult to estimate. This research proposes a methodology by which both behavioral and engineering safety investments are considered and compared in a specific local context. The methodology involves a multi-stage process that enables the analyst to select countermeasures that yield high benefits to costs, are targeted for a particular project, and that may involve costs and benefits that accrue over varying spatial and temporal scales. The methodology is illustrated using a case study from the Geary Boulevard Corridor in San Francisco, California. The case study illustrates that: 1) The methodology enables the identification and assessment of a wide range of safety investment types at the project level; 2) The nature of crash histories lend themselves to the selection of both behavioral and engineering investments, requiring cooperation across agencies; and 3) The results of the cost-benefit analysis are highly sensitive to cost and benefit assumptions, and thus listing and justification of all assumptions is required. It is recommended that a sensitivity analyses be conducted when there is large uncertainty surrounding cost and benefit assumptions.
Resumo:
Here mixed convection boundary layer flow of a viscous fluid along a heated vertical semi-infinite plate is investigated in a non-absorbing medium. The relationship between convection and thermal radiation is established via boundary condition of second kind on the thermally radiating vertical surface. The governing boundary layer equations are transformed into dimensionless parabolic partial differential equations with the help of appropriate transformations and the resultant system is solved numerically by applying straightforward finite difference method along with Gaussian elimination technique. It is worthy to note that Prandlt number, Pr, is taken to be small (<< 1) which is appropriate for liquid metals. Moreover, the numerical results are demonstrated graphically by showing the effects of important physical parameters, namely, the modified Richardson number (or mixed convection parameter), Ri*, and surface radiation parameter, R, in terms of local skin friction and local Nusselt number coefficients.
Resumo:
Recently the use of the carbon fibre reinforced polymer(CFRP) composites appears to be an excellent solution for retrofitting and strengthening of concrete and steel structures because of its superior physical and mechanical properties through the integration of other materials. However, the overall functionality and durability under various environmental conditions of the system has not yet been well documented. This paper reviews the environmental durability of CFRP strengthened system that has received only small coverage in previous review articles. Future research topics have also been indentified, such as durability of steel circular hollow section under various environmental conditions subjected to bending. Environment of interests are moisture/solution, alkalinity, creep/relaxation, fatigue, fire, thermal effects (including freeze-thaw), and ultraviolet exposure.
Resumo:
In this study, natural convection boundary layer flow of thermally radiating fluid along a heated vertical wavy surface is analyzed. Here, the radiative component of heat flux emulates the surface temperature. Governing equations are reduced to dimensionless form, subject to the appropriate transformation. Resulting dimensionless equations are transformed to a set of parabolic partial differential equations by using primitive variable formulation, which are then integrated numerically via iterative finite difference scheme. Emphasis has been given to low Prandtl number fluid. The numerical results obtained for the physical parameters, such as, surface radiation parameter, R, and radiative length parameter, ξ, are discussed in terms of local skin friction and Nusselt number coefficients. Comprehensive interpretation of velocity distribution is also given in the form of streamlines.
Resumo:
Lankes and Silverstein (2006) introduced the “participatory library” and suggested that the nature and form of the library should be explored. In the last several years, some attempts have been made in order to develop contemporary library models that are often known as Library 2.0. However, little research has been based on empirical data and such models have had a strong focus on technical aspects but less focus on participation. The research presented in this paper fills this gap. A grounded theory approach was adopted for this study. Six librarians were involved in in-depth individual interviews. As a preliminary result, five main factors of the participatory library emerged including technological, human, educational, social-economic, and environmental. Five factors influencing the participation in libraries were also identified: finance, technology, education, awareness, and policy. The study’s findings provide a fresh perspective on contemporary library and create a basis for further studies on this area.
Resumo:
Sustainability, safety and smartness are three key elements of a modern transportation system. This study illustrates various policy directions and initiatives of Singapore to address how its transportation system is progressing in light of these three components. Sustainability targets economical efficiency, environmental justice and social equity by including policies for integrating land use and transport planning, ensuring adequate transport supply measures, managing travel demand efficiently, and incorporating environment-friendly strategies. Safety initiatives of its transportation system aim to minimize injuries and incidents of all users including motorists, public transport commuters, pedestrians, and bicyclists. Smartness incorporates qualities like real time sensing, fast processing and decision making, and automated action-taking into its control, monitoring, information management and revenue collection systems. Various policy implications and technology applications along these three directions reveal that smart technologies facilitate implementation of policies promoting sustainability and safety. The Singapore experience could serve as a good reference for other cities in promoting a transportation system that is sustainable, safe and smart.
Resumo:
Despite a considerable amount of research on traffic injury severities, relatively little is known about the factors influencing traffic injury severity in developing countries, and in particular in Bangladesh. Road traffic crashes are a common headline in daily newspapers of Bangladesh. It has also recorded one of the highest road fatality rates in the world. This research identifies significant factors contributing to traffic injury severity in Dhaka – a mega city and capital of Bangladesh. Road traffic crash data of 5 years from 2007 to 2011 were collected from the Dhaka Metropolitan Police (DMP), which included about 2714 traffic crashes. The severity level of these crashes was documented in a 4-point ordinal scale: no injury (property damage), minor injury, severe injury, and death. An ordered Probit regression model has been estimated to identify factors contributing to injury severities. Results show that night time influence is associated with a higher level injury severity as is for individuals involved in single vehicle crashes. Crashes on highway sections within the city are found to be more injurious than crashes along the arterial and feeder roads. There is a lower likelihood of injury severity, however, if the road sections are monitored and enforced by the traffic police. The likelihood of injuries is lower on two-way traffic arrangements than one-way, and at four-legged intersections and roundabouts compare to road segments. The findings are compared with those from developed countries and the implications of this research are discussed in terms of policy settings for developing countries.
Resumo:
Driving on an approach to a signalized intersection while distracted is particularly dangerous, as potential vehicular conflicts and resulting angle collisions tend to be severe. Given the prevalence and importance of this particular scenario, the decisions and actions of distracted drivers during the onset of yellow lights are the focus of this study. Driving simulator data were obtained from a sample of 58 drivers under baseline and handheld mobile phone conditions at the University of Iowa - National Advanced Driving Simulator. Explanatory variables included age, gender, cell phone use, distance to stop-line, and speed. Although there is extensive research on drivers’ responses to yellow traffic signals, the examination has been conducted from a traditional regression-based approach, which does not necessary provide the underlying relations and patterns among the sampled data. In this paper, we exploit the benefits of both classical statistical inference and data mining techniques to identify the a priori relationships among main effects, non-linearities, and interaction effects. Results suggest that novice (16-17 years) and young drivers’ (18-25 years) have heightened yellow light running risk while distracted by a cell phone conversation. Driver experience captured by age has a multiplicative effect with distraction, making the combined effect of being inexperienced and distracted particularly risky. Overall, distracted drivers across most tested groups tend to reduce the propensity of yellow light running as the distance to stop line increases, exhibiting risk compensation on a critical driving situation.
Resumo:
Metal and semiconductor nanowires (NWs) have been widely employed as the building blocks of the nanoelectromechanical systems, which usually acted a resonant beam. Recent researches reported that nanowires are often polycrystalline, which contains grain boundaries (GBs) that transect the whole nanowire into a bamboo like structure. Based on the larger-scale molecular dynamics (MD) simulations, a comprehensive investigation of the influence from grain boundaries on the vibrational properties of doubly clamped Ag NWs is conducted. It is found that, the presence of grain boundary will result in significant energy dissipation during the resonance of polycrystalline NWs, which leads a great deterioration to the quality factor. Further investigation reveals that the energy dissipation is originated from the plastic deformation of polycrystalline NWs in the form of the nucleation of partial dislocations or the generation of micro stacking faults around the GBs and the micro stacking faults is found to keep almost intact during the whole vibration process. Moreover, it is observed that the closer of the grain boundary getting to the regions with the highest strain state, the more energy dissipation will be resulted from the plastic deformation. In addition, either the increase of the number of grain boundaries or the decrease of the distance between the grain boundary and the highest strain state region is observed to induce a lower first resonance frequency. This work sheds lights on the better understanding of the mechanical properties of polycrystalline NWs, which benefits the increasing utilities of NWs in diverse nano-electronic devices.
Resumo:
Rainfall can disrupt the balance of natural soil slope. This imbalance will be accelerated by existence of cracks in soil slope, which lead to decreasing shear strength and increasing hydraulic conductivity of the soil slope. Some research works have been conducted on the effects of surface-cracks on slope stability. However, the influence of deep-cracks is yet to be investigated. Limited availability of deep crack data due to the lack of effective sub-soil investigation methods could be one of the obstacles. To emphasize the effects of deep cracks in soil slope on its rain-induced instability, a natural soil slope in Indonesia that failed in 31st October 2010 due to heavy rainfall was analyzed for stability with and without deep cracks in the slope. The slope stability analysis was conducted using SLOPE/W coupling with the results of transient seepage analysis (SEEP/W) that simulate the pore-water pressure development in the slope during the rainfall. The results of Electrical Resistivity Tomography (ERT) survey, bore-hole tests and geometrical survey conducted on the slope before its failure were used to identify the soil layers’ stratification including deep cracks, the properties of different soil layers, and geometrical parameters of the slope for the analysis. The results showed that it is vital to consider the existence of deep crack in soil slopes in analysing their instability induced by rainfalls.
Resumo:
Rainfall has been identified as one of the main causes for embankment failures in areas where high annual rainfall is experienced. The inclination of the embankment slope is important for its stability during rainfall. In this study, instrumented model embankments were subjected to artificial rainfalls to investigate the effects of the slope inclination on their stability. The results of the study suggested that when the slope inclination is greater than the friction angle of the soil, the failure is initiated by the loss of soil suction and when it is smaller than the friction angle of the soil, the failure is initiated by the positive pore water pressure developed at the toe of the slope. Further, slopes become more susceptible to sudden collapse during rainfall as the slope angle increases.
Resumo:
Population increase and economic developments can lead to construction as well as demolition of infrastructures such as buildings, bridges, roads, etc and used concrete is the main waste product of them. Recycling of waste concrete to obtain the recycled concrete aggregates (RCA) for base and/or sub-base materials in road construction is a foremost application to be promoted to gain economical and sustainable benefits. As the mortar, bricks, glass and asphalt present in different constituents in RCA, it exhibits inconsistent properties and performance. In this study, six different types of RCA samples were subjected classification tests such as particle size distribution, plasticity, compaction test and California Bearing Ratio (CBR). Results were compared with those of the standard road materials used in Queensland, Australia and found that ‘RM1-100/RM3-0’ and ‘RM1-80/RM3-20’ samples are sitting in the margin of the minimum required specifications of base materials while others are lower than that.
Resumo:
The drawdown of reservoirs can significantly affect the stability of upstream slopes of earth dams. This is due to the removal of the balancing hydraulic forces acting on the dams and the undrained condition within the upstream slope soils. In such scenarios, the stability of the slopes can be influenced by a range of factors including drawdown rates, slope inclination and soil properties. This paper investigates the effects of drawdown rate, saturated hydraulic conductivity and unsaturated shear strength of dam materials on the stability of the upstream slope of an earth dam. In this study, the analysis of pore-water pressure changes within the upstream slope during reservoir drawdown was coupled with the slope stability analysis using the general limit equilibrium method. The results of the analysis suggested that a decrease in the reservoir water level caused the stability of the upstream slope to decrease. The dam embankment constructed with highly permeable soil was found to be more stable during drawdown scenarios, compared to others. Further, lower drawdown rates resulted in a higher safety factor for the upstream slope. Also, the safety factor of the slope calculated using saturated shear strength properties of the dam materials was slightly higher than that calculated using unsaturated shear strength properties. In general, for all the scenarios analysed, the lowest safety factor was found to be at the reservoir water level of about 2/3 of drawdown regime.
Resumo:
Graphene nanoribbon (GNR) with free edges demonstrates unique pre-existing edge energy and edge stress, leading to non-flat morphologies. Using molecular dynamics (MD) methods, we evaluated edge energies as well as edge stresses for four different edge types, including regular edges (armchair and zigzag), armchair edge terminated with hydrogen and reconstructed armchair. The results showed that compressive stress exists in the regular and hydrogen-terminated edges along the edge direction. In contrast, the reconstructed armchair edge is generally subject to tension. Furthermore, we also investigated shape transition between flat and rippled configurations of GNRs with different free edges. It was found that the pre-existing stress at free edges can greatly influence the initial energy state and the shape transition.