265 resultados para magnetic resonance
Resumo:
Genetic variability in the strength and precision of fear memory is hypothesised to contribute to the etiology of anxiety disorders, including post-traumatic stress disorder. We generated fear-susceptible (F-S) or fear-resistant (F-R) phenotypes from an F8 advanced intercross line (AIL) of C57BL/6J and DBA/2J inbred mice by selective breeding. We identified specific traits underlying individual variability in Pavlovian conditioned fear learning and memory. Offspring of selected lines differed in the acquisition of conditioned fear. Furthermore, F-S mice showed greater cued fear memory and generalised fear in response to a novel context than F-R mice. F-S mice showed greater basal corticosterone levels and hypothalamic corticotrophin-releasing hormone (CRH) mRNA levels than F-R mice, consistent with higher hypothalamic-pituitary-adrenal (HPA) axis drive. Hypothalamic mineralocorticoid receptor and CRH receptor 1 mRNA levels were decreased in F-S mice as compared with F-R mice. Manganese-enhanced magnetic resonance imaging (MEMRI) was used to investigate basal levels of brain activity. MEMRI identified a pattern of increased brain activity in F-S mice that was driven primarily by the hippocampus and amygdala, indicating excessive limbic circuit activity in F-S mice as compared with F-R mice. Thus, selection pressure applied to the AIL population leads to the accumulation of heritable trait-relevant characteristics within each line, whereas non-behaviorally relevant traits remain distributed. Selected lines therefore minimise false-positive associations between behavioral phenotypes and physiology. We demonstrate that intrinsic differences in HPA axis function and limbic excitability contribute to phenotypic differences in the acquisition and consolidation of associative fear memory. Identification of system-wide traits predisposing to variability in fear memory may help in the direction of more targeted and efficacious treatments for fear-related pathology. Through short-term selection in a B6D2 advanced intercross line we created mouse populations divergent for the retention of Pavlovian fear memory. Trait distinctions in HPA-axis drive and fear network circuitry could be made between naïve animals in the two lines. These data demonstrate underlying physiological and neurological differences between Fear-Susceptible and Fear-Resistant animals in a natural population. F-S and F-R mice may therefore be relevant to a spectrum of disorders including depression, anxiety disorders and PTSD for which altered fear processing occurs.
Resumo:
Do different brains forming a specific memory allocate the same groups of neurons to encode it? One way to test this question is to map neurons encoding the same memory and quantitatively compare their locations across individual brains. In a previous study, we used this strategy to uncover a common topography of neurons in the dorsolateral amygdala (LAd) that expressed a learning-induced and plasticity-related kinase (p42/44 mitogen-activated protein kinase; pMAPK), following auditory Pavlovian fear conditioning. In this series of experiments, we extend our initial findings to ask to what extent this functional topography depends upon intrinsic neuronal structure. We first showed that the majority (87 %) of pMAPK expression in the lateral amygdala was restricted to principal-type neurons. Next, we verified a neuroanatomical reference point for amygdala alignment using in vivo magnetic resonance imaging and in vitro morphometrics. We then determined that the topography of neurons encoding auditory fear conditioning was not exclusively governed by principal neuron cytoarchitecture. These data suggest that functional patterning of neurons undergoing plasticity in the amygdala following Pavlovian fear conditioning is specific to memory formation itself. Further, the spatial allocation of activated neurons in the LAd was specific to cued (auditory), but not contextual, fear conditioning. Spatial analyses conducted at another coronal plane revealed another spatial map unique to fear conditioning, providing additional evidence that the functional topography of fear memory storing cells in the LAd is non-random and stable. Overall, these data provide evidence for a spatial organizing principle governing the functional allocation of fear memory in the amygdala.
Resumo:
The reversible posterior leukoencephalopathy syndrome (RPLES) is a condition characterised by reversible neurological and radiological findings that has been associated with use of immunosuppressive, chemotherapeutic and more recently novel targeted therapies. We describe the case of a 50-year-old woman with advanced non-small cell lung cancer who developed status epilepticus shortly after receiving cisplatin and gemcitabine chemotherapy. The clinical, radiological and EEG findings during and post event are presented and are in keeping with a diagnosis of RPLES. Early recognition of this rare syndrome, supportive management and withdrawal of the offending agent appear to result in a reversal of the manifestations described. © 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Purpose: This study investigated the effect of chemical conjugation of the amino acid L-leucine to the polysaccharide chitosan on the dispersibility and drug release pattern of a polymeric nanoparticle (NP)-based controlled release dry powder inhaler (DPI) formulation. Methods: A chemical conjugate of L-leucine with chitosan was synthesized and characterized by Infrared (IR) Spectroscopy, Nuclear Magnetic Resonance (NMR) Spectroscopy, Elemental Analysis and X-ray Photoelectron Spectroscopy (XPS). Nanoparticles of both chitosan and its conjugate were prepared by a water-in-oil emulsification – glutaraldehyde cross-linking method using the antihypertensive agent, diltiazem (Dz) hydrochloride as the model drug. The surface morphology and particle size distribution of the nanoparticles were determined by Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS). The dispersibility of the nanoparticle formulation was analysed by a Twin Stage Impinger (TSI) with a Rotahaler as the DPI device. Deposition of the particles in the different stages was determined by gravimetry and the amount of drug released was analysed by UV spectrophotometry. The release profile of the drug was studied in phosphate buffered saline at 37 ⁰C and analyzed by UV spectrophotometry. Results: The TSI study revealed that the fine particle fractions (FPF), as determined gravimetrically, for empty and drug-loaded conjugate nanoparticles were significantly higher than for the corresponding chitosan nanoparticles (24±1.2% and 21±0.7% vs 19±1.2% and 15±1.5% respectively; n=3, p<0.05). The FPF of drug-loaded chitosan and conjugate nanoparticles, in terms of the amount of drug determined spectrophotometrically, had similar values (21±0.7% vs 16±1.6%). After an initial burst, both chitosan and conjugate nanoparticles showed controlled release that lasted about 8 to 10 days, but conjugate nanoparticles showed twice as much total drug release compared to chitosan nanoparticles (~50% vs ~25%). Conjugate nanoparticles also showed significantly higher dug loading and entrapment efficiency than chitosan nanoparticles (conjugate: 20±1% & 46±1%, chitosan: 16±1% & 38±1%, n=3, p<0.05). Conclusion: Although L-leucine conjugation to chitosan increased dispersibility of formulated nanoparticles, the FPF values are still far from optimum. The particles showed a high level of initial burst release (chitosan, 16% and conjugate, 31%) that also will need further optimization.
Resumo:
A focused library based on the marine natural products polyandrocarpamines A (1) and B (2) has been designed and synthesised using parallel solution-phase chemistry. In silico physicochemical property calculations were performed on synthetic candidates in order to optimise the library for drug discovery and chemical biology. A library of ten 2-aminoimidazolone products (3–12) was prepared by coupling glycocyamidine and a variety of aldehydes using a one-step stereoselective aldol condensation reaction under microwave conditions. All analogues were characterised by NMR, UV, IR and MS. The library was evaluated for cytotoxicity towards the prostate cancer cell lines, LNCaP, PC-3 and 22Rv1.
Resumo:
Quantitative determination of modification of primary sediment features, by the activity of organisms (i.e., bioturbation) is essential in geosciences. Some methods proposed since the 1960s are mainly based on visual or subjective determinations. The first semiquantitative evaluations of the Bioturbation Index, Ichnofabric Index, or the amount of bioturbation were attempted, in the best cases using a series of flashcards designed in different situations. Recently, more effective methods involve the use of analytical and computational methods such as X-rays, magnetic resonance imaging or computed tomography; these methods are complex and often expensive. This paper presents a compilation of different methods, using Adobe® Photoshop® software CS6, for digital estimation that are a part of the IDIAP (Ichnological Digital Analysis Images Package), which is an inexpensive alternative to recently proposed methods, easy to use, and especially recommended for core samples. The different methods — “Similar Pixel Selection Method (SPSM)”, “Magic Wand Method (MWM)” and the “Color Range Selection Method (CRSM)” — entail advantages and disadvantages depending on the sediment (e.g., composition, color, texture, porosity, etc.) and ichnological features (size of traces, infilling material, burrow wall, etc.). The IDIAP provides an estimation of the amount of trace fossils produced by a particular ichnotaxon, by a whole ichnocoenosis or even for a complete ichnofabric. We recommend the application of the complete IDIAP to a given case study, followed by selection of the most appropriate method. The IDIAP was applied to core material recovered from the IODP Expedition 339, enabling us, for the first time, to arrive at a quantitative estimation of the discrete trace fossil assemblage in core samples.
Resumo:
The Brain Research Institute (BRI) uses various types of indirect measurements, including EEG and fMRI, to understand and assess brain activity and function. As well as the recovery of generic information about brain function, research also focuses on the utilisation of such data and understanding to study the initiation, dynamics, spread and suppression of epileptic seizures. To assist with the future focussing of this aspect of their research, the BRI asked the MISG 2010 participants to examine how the available EEG and fMRI data and current knowledge about epilepsy should be analysed and interpreted to yield an enhanced understanding about brain activity occurring before, at commencement of, during, and after a seizure. Though the deliberations of the study group were wide ranging in terms of the related matters considered and discussed, considerable progress was made with the following three aspects. (1) The science behind brain activity investigations depends crucially on the quality of the analysis and interpretation of, as well as the recovery of information from, EEG and fMRI measurements. A number of specific methodologies were discussed and formalised, including independent component analysis, principal component analysis, profile monitoring and change point analysis (hidden Markov modelling, time series analysis, discontinuity identification). (2) Even though EEG measurements accurately and very sensitively record the onset of an epileptic event or seizure, they are, from the perspective of understanding the internal initiation and localisation, of limited utility. They only record neuronal activity in the cortical (surface layer) neurons of the brain, which is a direct reflection of the type of electrical activity they have been designed to record. Because fMRI records, through the monitoring of blood flow activity, the location of localised brain activity within the brain, the possibility of combining fMRI measurements with EEG, as a joint inversion activity, was discussed and examined in detail. (3) A major goal for the BRI is to improve understanding about ``when'' (at what time) an epileptic seizure actually commenced before it is identified on an eeg recording, ``where'' the source of this initiation is located in the brain, and ``what'' is the initiator. Because of the general agreement in the literature that, in one way or another, epileptic events and seizures represent abnormal synchronisations of localised and/or global brain activity the modelling of synchronisations was examined in some detail. References C. M. Michel, G. Thut, S. Morand, A. Khateb, A. J. Pegna, R. Grave de Peralta, S. Gonzalez, M. Seeck and T. Landis, Electric source imaging of human brain functions, Brain Res. Rev. , 36 (2--3), 2001, 108--118. doi:10.1016/S0165-0173(01)00086-8 S. Ogawa, R. S. Menon, S. G. Kim and K. Ugurbil, On the characteristics of functional magnetic resonance imaging of the brain, Annu. Rev. Bioph. Biom. , 27 , 1998, 447--474. doi:10.1146/annurev.biophys.27.1.447 C. D. Binnie and H. Stefan, Modern electroencephalography: its role in epilepsy management, Clin. Neurophysiol. , 110 (10), 1999, 1671--1697. doi:10.1016/S1388-2457(99)00125-X J. X. Tao, A. Ray, S. Hawes-Ebersole and J. S. Ebersole, Intracranial eeg substrates of scalp eeg interictal spikes, Epilepsia , 46 (5), 2005, 669--76. doi:10.1111/j.1528-1167.2005.11404.x S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle and K. Ugurbil, Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging, P. Natl. Acad. Sci. USA , 89 (13), 1992, 5951--5955. doi:10.1073/pnas.89.13.5951 J. Engel Jr., Report of the ilae classification core group, Epilepsia , 47 (9), 2006, 1558--1568. doi:10.1111/j.1528-1167.2006.00215.x L. Lemieux, A. Salek-Haddadi, O. Josephs, P. Allen, N. Toms, C. Scott, K. Krakow, R. Turner and D. R. Fish, Event-related fmri with simultaneous and continuous eeg: description of the method and initial case r port, NeuroImage , 14 (3), 2001, 780--7. doi:10.1006/nimg.2001.0853 P. Federico, D. F. Abbott, R. S. Briellmann, A. S. Harvey and G. D. Jackson, Functional mri of the pre-ictal state, Brain , 128 (8), 2005, 1811-7. doi:10.1093/brain/awh533 C. S. Hawco, A. P. Bagshaw, Y. Lu, F. Dubeau and J. Gotman, bold changes occur prior to epileptic spikes seen on scalp eeg, NeuroImage , 35 (4), 2007, 1450--1458. doi:10.1016/j.neuroimage.2006.12.042 F. Moeller, H. R. Siebner, S. Wolff, H. Muhle, R. Boor, O. Granert, O. Jansen, U. Stephani and M. Siniatchkin, Changes in activity of striato-thalamo-cortical network precede generalized spike wave discharges, NeuroImage , 39 (4), 2008, 1839--1849. doi:10.1016/j.neuroimage.2007.10.058 V. Osharina, E. Ponchel, A. Aarabi, R. Grebe and F. Wallois, Local haemodynamic changes preceding interictal spikes: A simultaneous electrocorticography (ecog) and near-infrared spectroscopy (nirs) analysis in rats, NeuroImage , 50 (2), 2010, 600--607. doi:10.1016/j.neuroimage.2010.01.009 R. S. Fisher, W. Boas, W. Blume, C. Elger, P. Genton, P. Lee and J. Engel, Epileptic seizures and epilepsy: Definitions proposed by the international league against epilepsy (ilae) and the international bureau for epilepsy (ibe), Epilepsia , 46 (4), 2005, 470--472. doi:10.1111/j.0013-9580.2005.66104.x H. Berger, Electroencephalogram in humans, Arch. Psychiat. Nerven. , 87 , 1929, 527--570. C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli and R. G. de Peralta, eeg source imaging, Clin. Neurophysiol. , 115 (10), 2004, 2195--2222. doi:10.1016/j.clinph.2004.06.001 P. L. Nunez and R. B. Silberstein, On the relationship of synaptic activity to macroscopic measurements: Does co-registration of eeg with fmri make sense?, Brain Topogr. , 13 (2), 2000, 79--96. doi:10.1023/A:1026683200895 S. Ogawa, T. M. Lee, A. R. Kay and D. W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation, P. Natl. Acad. Sci. USA , 87 (24), 1990, 9868--9872. doi:10.1073/pnas.87.24.9868 J. S. Gati, R. S. Menon, K. Ugurbil and B. K. Rutt, Experimental determination of the bold field strength dependence in vessels and tissue, Magn. Reson. Med. , 38 (2), 1997, 296--302. doi:10.1002/mrm.1910380220 P. A. Bandettini, E. C. Wong, R. S. Hinks, R. S. Tikofsky and J. S. Hyde, Time course EPI of human brain function during task activation, Magn. Reson. Med. , 25 (2), 1992, 390--397. K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppelm, M. S. Cohen and R. Turner, Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation, P. Natl. Acad. Sci. USA , 89 (12), 1992, 5675--5679. doi:10.1073/pnas.89.12.5675 J. Frahm, K. D. Merboldt and W. Hnicke, Functional mri of human brain activation at high spatial resolution, Magn. Reson. Med. , 29 (1), 1993, 139--144. P. A. Bandettini, A. Jesmanowicz, E. C. Wong and J. S. Hyde, Processing strategies for time-course data sets in functional MRI of the human brain, Magn. Reson. Med. , 30 (2), 1993, 161--173. K. J. Friston, P. Jezzard and R. Turner, Analysis of functional MRI time-series, Hum. Brain Mapp. , 1 (2), 1994, 153--171. B. Biswal, F. Z. Yetkin, V. M. Haughton and J. S. Hyde, Functional connectivity in the motor cortex of resting human brain using echo-planar mri, Mag. Reson. Med. , 34 (4), 1995, 537--541. doi:10.1002/mrm.1910340409 K. J. Friston, J. Ashburner, C. D. Frith, J. Poline, J. D. Heather and R. S. J. Frackowiak, Spatial registration and normalization of images, Hum. Brain Mapp. , 3 (3), 1995, 165--189. K. J. Friston, S. Williams, R. Howard, R. S. Frackowiak and R. Turner, Movement-related effects in fmri time-series, Magn. Reson. Med. , 35 (3), 1996, 346--355. G. H. Glover, T. Q. Li and D. Ress, Image-based method for retrospective correction of physiological motion effects in fmri: Retroicor, Magn. Reson. Med. , 44 (1), 2000, 162--167. doi:10.1002/1522-2594(200007)44:13.0.CO;2-E K. J. Friston, O. Josephs, G. Rees and R. Turner, Nonlinear event-related responses in fmri, Magn. Reson. Med. , 39 (1), 1998, 41--52. doi:10.1002/mrm.1910390109 K. Ugurbil, L. Toth and D. Kim, How accurate is magnetic resonance imaging of brain function?, Trends Neurosci. , 26 (2), 2003, 108--114. doi:10.1016/S0166-2236(02)00039-5 D. S. Kim, I. Ronen, C. Olman, S. G. Kim, K. Ugurbil and L. J. Toth, Spatial relationship between neuronal activity and bold functional mri, NeuroImage , 21 (3), 2004, 876--885. doi:10.1016/j.neuroimage.2003.10.018 A. Connelly, G. D. Jackson, R. S. Frackowiak, J. W. Belliveau, F. Vargha-Khadem and D. G. Gadian, Functional mapping of activated human primary cortex with a clinical mr imaging system, Radiology , 188 (1), 1993, 125--130. L. Allison, Hidden Markov Models, Technical Report , School of Computer and Software Engineering, Monash University, 2000. R. J. Elliott, L. Aggoun and J.B. Moore, Hidden Markov Models: Estimation and Control, Appl. Math.-Czech. , 2004. B. Bhavnagri, Discontinuities of plane functions projected from a surface with methods for finding these , Technical Report, 2009. B. Bhavnagri, Computer Vision using Shape Spaces , Technical Report,1996, University of Adelaide. B. Bhavnagri, A method for representing shape based on an equivalence relation on polygons, Pattern Recogn. , 27 (2), 1994, 247--260. doi:10.1016/0031-3203(94)90057-4 D. F. Abbott, A. B. Waites, A. S. Harvey and G. D. Jackson, Exploring epileptic seizure onset with fmri, NeuroImage , 36(S1) (344TH-PM), 2007. M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science , 197 , 1977, 287--289. S. H. Strogatz, SYNC - The Emerging Science of Spontaneous Order , Theia, New York, 2003. J. W. Kim, J. A. Roberts and P. A. Robinson, Dynamics of epileptic seizures: Evolution, spreading, and suppression, J. Theor. Biol. , 257 (4), 2009, 527--532. doi:10.1016/j.jtbi.2008.12.009 Y. Kuramoto, T. Aoyagi, I. Nishikawa, T. Chawanya T and K. Okuda, Neural network model carrying phase information with application to collective dynamics, J. Theor. Phys. , 87 (5), 1992, 1119--1126. V. B. Mountcastle, The columnar organization of the neocortex, Brain , 120 (4), 1997, 701. doi:10.1093/brain/120.4.701 F. L. Silva, W. Blanes, S. N. Kalitzin, J. Parra, P. Suffczynski and D. N. Velis, Epilepsies as dynamical diseases of brain systems: Basic models of the transition between normal and epileptic activity, Epilepsia , 44 (12), 2003, 72--83. F. H. Lopes da Silva, W. Blanes, S. N. Kalitzin, J. Parra, P. Suffczynski and D. N. Velis, Dynamical diseases of brain systems: different routes to epileptic seizures, ieee T. Bio-Med. Eng. , 50 (5), 2003, 540. L.D. Iasemidis, Epileptic seizure prediction and control, ieee T. Bio-Med. Eng. , 50 (5), 2003, 549--558. L. D. Iasemidis, D. S. Shiau, W. Chaovalitwongse, J. C. Sackellares, P. M. Pardalos, J. C. Principe, P. R. Carney, A. Prasad, B. Veeramani, and K. Tsakalis, Adaptive epileptic seizure prediction system, ieee T. Bio-Med. Eng. , 50 (5), 2003, 616--627. K. Lehnertz, F. Mormann, T. Kreuz, R.G. Andrzejak, C. Rieke, P. David and C. E. Elger, Seizure prediction by nonlinear eeg analysis, ieee Eng. Med. Biol. , 22 (1), 2003, 57--63. doi:10.1109/MEMB.2003.1191451 K. Lehnertz, R. G. Andrzejak, J. Arnhold, T. Kreuz, F. Mormann, C. Rieke, G. Widman and C. E. Elger, Nonlinear eeg analysis in epilepsy: Its possible use for interictal focus localization, seizure anticipation, and prevention, J. Clin. Neurophysiol. , 18 (3), 2001, 209. B. Litt and K. Lehnertz, Seizure prediction and the preseizure period, Curr. Opin. Neurol. , 15 (2), 2002, 173. doi:10.1097/00019052-200204000-00008 B. Litt and J. Echauz, Prediction of epileptic seizures, Lancet Neurol. , 1 (1), 2002, 22--30. doi:10.1016/S1474-4422(02)00003-0 M. M{a}kiranta, J. Ruohonen, K Suominen, J. Niinim{a}ki, E. Sonkaj{a}rvi, V. Kiviniemi, T. Sepp{a}nen, S. Alahuhta, V. J{a}ntti and O. Tervonen, {bold} signal increase preceeds eeg spike activity--a dynamic penicillin induced focal epilepsy in deep anesthesia, NeuroImage , 27 (4), 2005, 715--724. doi:10.1016/j.neuroimage.2005.05.025 K. Lehnertz, F. Mormann, H. Osterhage, A. M{u}ller, J. Prusseit, A. Chernihovskyi, M. Staniek, D. Krug, S. Bialonski and C. E. Elger, State-of-the-art of seizure prediction, J. Clin. Neurophysiol. , 24 (2), 2007, 147. doi:10.1097/WNP.0b013e3180336f16 F. Mormann, T. Kreuz, C. Rieke, R. G. Andrzejak, A. Kraskov, P. David, C. E. Elger and K. Lehnertz, On the predictability of epileptic seizures, Clin. Neurophysiol. , 116 (3), 2005, 569--587. doi:10.1016/j.clinph.2004.08.025 F. Mormann, R. G. Andrzejak, C. E. Elger and K. Lehnertz, Seizure prediction: the long and winding road, Brain , 130 (2), 2007, 314--333. doi:10.1093/brain/awl241 Z. Rogowski, I. Gath and E. Bental, On the prediction of epileptic seizures, Biol. Cybern. , 42 (1), 1981, 9--15. Y. Salant, I. Gath, O. Henriksen, Prediction of epileptic seizures from two-channel eeg, Med. Biol. Eng. Comput. , 36 (5), 1998, 549--556. doi:10.1007/BF02524422 J. Gotman and D.J. Koffler, Interictal spiking increases after seizures but does not after decrease in medication, Evoked Potential , 72 (1), 1989, 7--15. J. Gotman and M. G. Marciani, Electroencephalographic spiking activity, drug levels, and seizure occurence in epileptic patients, Ann. Neurol. , 17 (6), 1985, 59--603. A. Katz, D. A. Marks, G. McCarthy and S. S. Spencer, Does interictal spiking change prior to seizures?, Electroen. Clin. Neuro. , 79 (2), 1991, 153--156. A. Granada, R. M. Hennig, B. Ronacher, A. Kramer and H. Herzel, Phase Response Curves: Elucidating the dynamics of couples oscillators, Method Enzymol. , 454 (A), 2009, 1--27. doi:10.1016/S0076-6879(08)03801-9 doi:10.1016/S0076-6879(08)03801-9 H. Kantz and T. Schreiber, Nonlinear time series analysis , 2004, Cambridge Univ Press. M. V. L. Bennett and R. S Zukin, Electrical coupling and neuronal synchronization in the mammalian brain, Neuron , 41 (4), 2004, 495 --511. doi:10.1016/S0896-6273(04)00043-1 L.D. Iasemidis, J. Chris Sackellares, H. P. Zaveri and W. J. Williams, Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures, Brain Topogr. , 2 (3), 1990, 187--201. doi:10.1007/BF01140588 M. Le Van Quyen, J. Martinerie, V. Navarro, M. Baulac and F. J. Varela, Characterizing neurodynamic changes before seizures, J. Clin. Neurophysiol. , 18 (3), 2001, 191. J. Martinerie, C. Adam, M. Le Van Quyen, M. Baulac, S. Clemenceau, B. Renault and F. J. Varela, Epileptic seizures can be anticipated by non-linear analysis, Nat. Med. , 4 (10), 1998, 1173--1176. doi:10.1038/2667 A. Pikovsky, M. Rosenblum, J. Kurths and R. C. Hilborn, Synchronization: A universal concept in nonlinear science, Amer. J. Phys. , 70 , 2002, 655. H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J. , 12 (1), 1972, 1--24. D. Cumin and C. P. Unsworth, Generalising the Kuramoto model for the study of neuronal synchronisation in the brain, Physica D , 226 (2), 2007, 181--196. doi:10.1016/j.physd.2006.12.004 F. K. Skinner, H. Bazzazi and S. A. Campbell, Two-cell to N-cell heterogeneous, inhibitory networks: Precise linking of multistable and coherent properties, J. Comput. Neurosci. , 18 (3), 2005, 343--352. doi:10.1007/s10827-005-0331-1 W. W. Lytton, Computer modelling of epilepsy, Nat. Rev. Neurosci. , 9 (8), 2008, 626--637. doi:10.1038/nrn2416 R. D. Traub, A. Bibbig, F. E. N. LeBeau, E. H. Buhl and M. A. Whittington, Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro, Ann. Rev. , 2004. R. D. Traub, A. Draguhn, M. A. Whittington, T. Baldeweg, A. Bibbig, E. H. Buhl and D. Schmitz, Axonal gap junc ions between principal neurons: A novel source of network oscillations, and perhaps epileptogenesis., Rev. Neuroscience , 13 (1), 2002, 1. doi:10.1146/annurev.neuro.27.070203.144303 M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V. Dakos, H. Held, E. H. van Nes, M. Rietkerk and G. Sugihara, Early-warning signals for critical transitions, Nature , 461 (7260), 2009, 53--59. doi:10.1038/nature08227 K. Murphy, A Brief Introduction to Graphical Models and Bayesian Networks , 2008, http://www.cs.ubc.ca/murphyk/Bayes/bnintro.html . R. C. Bradley, An elementary
Resumo:
Negative ion photoelectron spectroscopy has been used to study the HCCN- and HCNC- ions. The electron affinities (EA) of cyanocarbene have been measured to be EA(HCCN (X) over tilde (3)Sigma(-)=2.003+/-0.014 eV and EA(DCCN (X) over tilde (3)Sigma(-))=2.009+/-0.020 eV. Photodetachment of HCCN- to HCCN (X) over tilde (3)Sigma(-) shows a 0.4 eV long vibrational progression in nu(5), the H-CCN bending mode; the HCCN- photoelectron spectra reveal excitations up to 10 quanta in nu(5). The term energies for the excited singlet state are found to be T-0(HCCN (a) over tilde (1)A('))=0.515+/-0.016 eV and T-0(DCCN (a) over tilde (1)A('))=0.518+/-0.027 eV. For the isocyanocarbene, the two lowest states switch and HCNC has a singlet ground state and an excited triplet state. The electron affinities are EA(HCNC (X) over tilde (1)A('))=1.883+/-0.013 eV and EA((X) over tilde (1)A(') DCNC)=1.877+/-0.010 eV. The term energy for the excited triplet state is T-0(HCNC (a) over tilde (3)A("))=0.050+/-0.028 eV and T-0(DCNC (a) over tilde (3)A("))=0.063+/-0.030 eV. Proton transfer kinetics in a flowing afterglow apparatus were used to re-measure the enthalpy of deprotonation of CH3NC to be Delta(acid)H(298)(CH3NC)=383.6+/-0.6 kcal mol(-1). The acidity/EA thermodynamic cycle was used to deduce D-0(H-CHCN)=104+/-2 kcal mol(-1) [Delta(f)H(0)(HCCN)=110+/-4 kcal mol(-1)] and D-0(H-CHNC)=106+/-4 kcal mol(-1) [Delta(f)H(0)(HCNC)=133+/-5 kcal mol(-1)]. (C) 2002 American Institute of Physics.
Resumo:
OBJECTIVE To investigate the impact of new-onset diabetic ketoacidosis (DKA) during child- hood on brain morphology and function. RESEARCH DESIGN AND METHODS Patients aged 6–18 years with and without DKA at diagnosis were studied at four time points: <48 h, 5 days, 28 days, and 6 months postdiagnosis. Patients under- went magnetic resonance imaging (MRI) and spectroscopy with cognitive assess- ment at each time point. Relationships between clinical characteristics at presentation and MRI and neurologic outcomes were examined using multiple linear regression, repeated-measures, and ANCOVA analyses. RESULTS Thirty-six DKA and 59 non-DKA patients were recruited between 2004 and 2009. With DKA, cerebral white matter showed the greatest alterations with increased total white matter volume and higher mean diffusivity in the frontal, temporal, and parietal white matter. Total white matter volume decreased over the first 6 months. For gray matter in DKA patients, total volume was lower at baseline and increased over 6 months. Lower levels of N-acetylaspartate were noted at base- line in the frontal gray matter and basal ganglia. Mental state scores were lower at baseline and at 5 days. Of note, although changes in total and regional brain volumes over the first 5 days resolved, they were associated with poorer delayed memory recall and poorer sustained and divided attention at 6 months. Age at time of presentation and pH level were predictors of neuroimaging and functional outcomes. CONCLUSIONS DKA at type 1 diabetes diagnosis results in morphologic and functional brain changes. These changes are associated with adverse neurocognitive outcomes in the medium term.
Resumo:
Background Numerous studies demonstrate the generation and short-term survival of adipose tissue; however, long-term persistence remains elusive. This study evaluates long-term survival and transferability of de novo adipose constructs based on a ligated vascular pedicle and tissue engineering chamber combination. Methods Defined adipose tissue flaps were implanted into rats in either intact or perforated domed chambers. In half of the groups, the chambers were removed after 10 weeks and the constructs transferred on their vascular pedicle to a new site, where they were observed for a further 10 weeks. In the remaining groups, the tissue construct was observed for 20 weeks inside the chamber. Tissue volume was assessed using magnetic resonance imaging and histologic measures, and constructs were assessed for stability and necrosis. Sections were assessed histologically and for proliferation using Ki-67. Results At 20 weeks, volume analysis revealed an increase in adipose volume from 0.04 ± 0.001 ml at the time of insertion into the chambers to 0.27 ± 0.004 ml in the closed and 0.44 ± 0.014 ml in the perforated chambers. There was an additional increase of approximately 10 to 15 percent in tissue volume in flaps that remained in chambers for 20 weeks, whereas the volume of the transferred tissue not in chambers remained unaltered. Histomorphometric assessment of the tissues documented no signs of hypertrophy, fat necrosis, or atypical changes of the newly generated tissue. Conclusion This study presents a promising new method of generating significant amounts of mature, vascularized, stable, and transferable adipose tissue for permanent autologous soft-tissue replacement.
Resumo:
The particle size, morphology, crystallinity order and structural defects of four kaolinite samples are characterized by the techniques including particle size analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). The particle size of four kaolinite samples gradually increases. Four samples all belong to the ordered kaolinite and show a decrease in structural order with the increase of kaolinite particle size. The changes of structural defect are proved by the increase of the band splitting in Raman spectroscopy, the decrease of the intensity of absorption bands in infrared spectroscopy, and the decrease of equivalent silicon atom and the increase of nonequivalent aluminum atom in MAS NMR spectroscopy. The differences in morphology and structural defect are attributed to the broken bonds of Al–O–Si, Al–O–Al and Si–O–Si and the Al substitution for Si in tetrahedral sheets.
Resumo:
This article describes the first steps toward comprehensive characterization of molecular transport within scaffolds for tissue engineering. The scaffolds were fabricated using a novel melt electrospinning technique capable of constructing 3D lattices of layered polymer fibers with well - defined internal microarchitectures. The general morphology and structure order was then determined using T 2 - weighted magnetic resonance imaging and X - ray microcomputed tomography. Diffusion tensor microimaging was used to measure the time - dependent diffusivity and diffusion anisotropy within the scaffolds. The measured diffusion tensors were anisotropic and consistent with the cross - hatched geometry of the scaffolds: diffusion was least restricted in the direction perpendicular to the fiber layers. The results demonstrate that the cross - hatched scaffold structure preferentially promotes molecular transport vertically through the layers ( z - axis), with more restricted diffusion in the directions of the fiber layers ( x – y plane). Diffusivity in the x – y plane was observed to be invariant to the fiber thickness. The characteristic pore size of the fiber scaffolds can be probed by sampling the diffusion tensor at multiple diffusion times. Prospective application of diffusion tensor imaging for the real - time monitoring of tissue maturation and nutrient transport pathways within tissue engineering scaffolds is discussed.
Resumo:
Through a combinatorial approach involving experimental measurement and plasma modelling, it is shown that a high degree of control over diamond-like nanocarbon film sp3/sp2 ratio (and hence film properties) may be exercised, starting at the level of electrons (through modification of the plasma electron energy distribution function). Hydrogenated amorphous carbon nanoparticle films with high percentages of diamond-like bonds are grown using a middle-frequency (2 MHz) inductively coupled Ar + CH4 plasma. The sp3 fractions measured by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy in the thin films are explained qualitatively using sp3/sp2 ratios 1) derived from calculated sp3 and sp2 hybridized precursor species densities in a global plasma discharge model and 2) measured experimentally. It is shown that at high discharge power and lower CH4 concentrations, the sp3/sp2 fraction is higher. Our results suggest that a combination of predictive modeling and experimental studies is instrumental to achieve deterministically grown made-to-order diamond-like nanocarbons suitable for a variety of applications spanning from nano-magnetic resonance imaging to spin-flip quantum information devices. This deterministic approach can be extended to graphene, carbon nanotips, nanodiamond and other nanocarbon materials for a variety of applications