442 resultados para language spoken at home
Resumo:
Reliability and validity in the testing of spoken language are essential in order to assess learners' English language proficiency as evidence of their readiness to begin courses in tertiary institutions. Research has indicated that the task chosen to elicit language samples can have a marked effect on both the nature of the interaction, including the power differential, and assessment, raising the issue of ethics. This exploratory studey, with a group of 32 students from the Peoples's Republic of China preparing for tertiary study in Singapore, compares test-takers' reactions to the use of an oral proficiency interview and a pair interaction.
Resumo:
This paper introduces a novel technique to directly optimise the Figure of Merit (FOM) for phonetic spoken term detection. The FOM is a popular measure of sTD accuracy, making it an ideal candiate for use as an objective function. A simple linear model is introduced to transform the phone log-posterior probabilities output by a phe classifier to produce enhanced log-posterior features that are more suitable for the STD task. Direct optimisation of the FOM is then performed by training the parameters of this model using a non-linear gradient descent algorithm. Substantial FOM improvements of 11% relative are achieved on held-out evaluation data, demonstrating the generalisability of the approach.
Resumo:
Home Automation (HA) has emerged as a prominent ¯eld for researchers and in- vestors confronting the challenge of penetrating the average home user market with products and services emerging from technology based vision. In spite of many technology contri- butions, there is a latent demand for a®ordable and pragmatic assistive technologies for pro-active handling of complex lifestyle related problems faced by home users. This study has pioneered to develop an Initial Technology Roadmap for HA (ITRHA) that formulates a need based vision of 10-15 years, identifying market, product and technology investment opportunities, focusing on those aspects of HA contributing to e±cient management of home and personal life. The concept of Family Life Cycle is developed to understand the temporal needs of family. In order to formally describe a coherent set of family processes, their relationships, and interaction with external elements, a reference model named Fam- ily System is established that identi¯es External Entities, 7 major Family Processes, and 7 subsystems-Finance, Meals, Health, Education, Career, Housing, and Socialisation. Anal- ysis of these subsystems reveals Soft, Hard and Hybrid processes. Rectifying the lack of formal methods for eliciting future user requirements and reassessing evolving market needs, this study has developed a novel method called Requirement Elicitation of Future Users by Systems Scenario (REFUSS), integrating process modelling, and scenario technique within the framework of roadmapping. The REFUSS is used to systematically derive process au- tomation needs relating the process knowledge to future user characteristics identi¯ed from scenarios created to visualise di®erent futures with richly detailed information on lifestyle trends thus enabling learning about the future requirements. Revealing an addressable market size estimate of billions of dollars per annum this research has developed innovative ideas on software based products including Document Management Systems facilitating automated collection, easy retrieval of all documents, In- formation Management System automating information services and Ubiquitous Intelligent System empowering the highly mobile home users with ambient intelligence. Other product ideas include robotic devices of versatile Kitchen Hand and Cleaner Arm that can be time saving. Materialisation of these products require technology investment initiating further research in areas of data extraction, and information integration as well as manipulation and perception, sensor actuator system, tactile sensing, odour detection, and robotic controller. This study recommends new policies on electronic data delivery from service providers as well as new standards on XML based document structure and format.
Resumo:
This paper reveals a journey of theatrical exploration. It is a journey of enquiry and investigation backed by a vigorous, direct and dense professional history of creative work.
Resumo:
The topic of the present work is to study the relationship between the power of the learning algorithms on the one hand, and the expressive power of the logical language which is used to represent the problems to be learned on the other hand. The central question is whether enriching the language results in more learning power. In order to make the question relevant and nontrivial, it is required that both texts (sequences of data) and hypotheses (guesses) be translatable from the “rich” language into the “poor” one. The issue is considered for several logical languages suitable to describe structures whose domain is the set of natural numbers. It is shown that enriching the language does not give any advantage for those languages which define a monadic second-order language being decidable in the following sense: there is a fixed interpretation in the structure of natural numbers such that the set of sentences of this extended language true in that structure is decidable. But enriching the original language even by only one constant gives an advantage if this language contains a binary function symbol (which will be interpreted as addition). Furthermore, it is shown that behaviourally correct learning has exactly the same power as learning in the limit for those languages which define a monadic second-order language with the property given above, but has more power in case of languages containing a binary function symbol. Adding the natural requirement that the set of all structures to be learned is recursively enumerable, it is shown that it pays o6 to enrich the language of arithmetics for both finite learning and learning in the limit, but it does not pay off to enrich the language for behaviourally correct learning.