169 resultados para intelligent sensors
Resumo:
The Smart Fields programme has been active in Shell over the last decade and has given large benefits. In order to understand the value and to underpin strategies for the future implementation programme, a study was carried out to quantify the benefits to date. This focused on actually achieved value, through increased production or lower costs. This provided an estimate of the total value achieved to date. Future benefits such as increased reserves or continued production gain were recorded separately. The paper describes the process followed in the benefits quantification. It identifies the key solutions and technologies and describes the mechanism used to understand the relation between solutions and value. Examples have been given of value from various assets around the world, in both existing fields and in green fields. Finally, the study provided the methodology for tracking of value. This helps Shell to estimate and track the benefits of the Smart Fields programme at company scale.
Resumo:
In this paper we present a method for autonomously tuning the threshold between learning and recognizing a place in the world, based on both how the rodent brain is thought to process and calibrate multisensory data and the pivoting movement behaviour that rodents perform in doing so. The approach makes no assumptions about the number and type of sensors, the robot platform, or the environment, relying only on the ability of a robot to perform two revolutions on the spot. In addition, it self-assesses the quality of the tuning process in order to identify situations in which tuning may have failed. We demonstrate the autonomous movement-driven threshold tuning on a Pioneer 3DX robot in eight locations spread over an office environment and a building car park, and then evaluate the mapping capability of the system on journeys through these environments. The system is able to pick a place recognition threshold that enables successful environment mapping in six of the eight locations while also autonomously flagging the tuning failure in the remaining two locations. We discuss how the method, in combination with parallel work on autonomous weighting of individual sensors, moves the parameter dependent RatSLAM system significantly closer to sensor, platform and environment agnostic operation.
Resumo:
This work aims to contribute to reliability and integrity in perceptual systems of autonomous ground vehicles. Information theoretic based metrics to evaluate the quality of sensor data are proposed and applied to visual and infrared camera images. The contribution of the proposed metrics to the discrimination of challenging conditions is discussed and illustrated with the presence of airborne dust and smoke.
Resumo:
Reliable robotic perception and planning are critical to performing autonomous actions in uncertain, unstructured environments. In field robotic systems, automation is achieved by interpreting exteroceptive sensor information to infer something about the world. This is then mapped to provide a consistent spatial context, so that actions can be planned around the predicted future interaction of the robot and the world. The whole system is as reliable as the weakest link in this chain. In this paper, the term mapping is used broadly to describe the transformation of range-based exteroceptive sensor data (such as LIDAR or stereo vision) to a fixed navigation frame, so that it can be used to form an internal representation of the environment. The coordinate transformation from the sensor frame to the navigation frame is analyzed to produce a spatial error model that captures the dominant geometric and temporal sources of mapping error. This allows the mapping accuracy to be calculated at run time. A generic extrinsic calibration method for exteroceptive range-based sensors is then presented to determine the sensor location and orientation. This allows systematic errors in individual sensors to be minimized, and when multiple sensors are used, it minimizes the systematic contradiction between them to enable reliable multisensor data fusion. The mathematical derivations at the core of this model are not particularly novel or complicated, but the rigorous analysis and application to field robotics seems to be largely absent from the literature to date. The techniques in this paper are simple to implement, and they offer a significant improvement to the accuracy, precision, and integrity of mapped information. Consequently, they should be employed whenever maps are formed from range-based exteroceptive sensor data. © 2009 Wiley Periodicals, Inc.
Resumo:
This work aims to promote integrity in autonomous perceptual systems, with a focus on outdoor unmanned ground vehicles equipped with a camera and a 2D laser range finder. A method to check for inconsistencies between the data provided by these two heterogeneous sensors is proposed and discussed. First, uncertainties in the estimated transformation between the laser and camera frames are evaluated and propagated up to the projection of the laser points onto the image. Then, for each pair of laser scan-camera image acquired, the information at corners of the laser scan is compared with the content of the image, resulting in a likelihood of correspondence. The result of this process is then used to validate segments of the laser scan that are found to be consistent with the image, while inconsistent segments are rejected. Experimental results illustrate how this technique can improve the reliability of perception in challenging environmental conditions, such as in the presence of airborne dust.
Resumo:
This work aims to promote reliability and integrity in autonomous perceptual systems, with a focus on outdoor unmanned ground vehicle (UGV) autonomy. For this purpose, a comprehensive UGV system, comprising many different exteroceptive and proprioceptive sensors has been built. The first contribution of this work is a large, accurately calibrated and synchronised, multi-modal data-set, gathered in controlled environmental conditions, including the presence of dust, smoke and rain. The data have then been used to analyse the effects of such challenging conditions on perception and to identify common perceptual failures. The second contribution is a presentation of methods for mitigating these failures to promote perceptual integrity in adverse environmental conditions.
Resumo:
Learning programming is known to be difficult. One possible reason why students fail programming is related to the fact that traditional learning in the classroom places more emphasis on lecturing the material instead of applying the material to a real application. For some students, this teaching model may not catch their interest. As a result they may not give their best effort to understand the material given. Seeing how the knowledge can be applied to real life problems can increase student interest in learning. As a consequence, this will increase their effort to learn. Anchored learning that applies knowledge to solve real life problems may be the key to improving student performance. In anchored learning, it is necessary to provide resources that can be accessed by the student as they learn. These resources can be provided by creating an Intelligent Tutoring System (ITS) that can support the student when they need help or experience a problem. Unfortunately, there is no ITS developed for the programming domain that has incorporated anchored learning in its teaching system. Having an ITS that supports anchored learning will not only be able to help the student learn programming effectively but will also make the learning process more enjoyable. This research tries to help students learn C# programming using an anchored learning ITS named CSTutor. Role playing is used in CSTutor to present a real world situation where they develop their skills. A knowledge base using First Order Logic is used to represent the student's code and to give feedback and assistance accordingly.
Resumo:
A new wave energy flow (WEF) map concept was proposed in this work. Based on it, an improved technique incorporating the laser scanning method and Betti’s reciprocal theorem was developed to evaluate the shape and size of damage as well as to realize visualization of wave propagation. In this technique, a simple signal processing algorithm was proposed to construct the WEF map when waves propagate through an inspection region, and multiple lead zirconate titanate (PZT) sensors were employed to improve inspection reliability. Various damages in aluminum and carbon fiber reinforced plastic laminated plates were experimentally and numerically evaluated to validate this technique. The results show that it can effectively evaluate the shape and size of damage from wave field variations around the damage in the WEF map.
Resumo:
A set of resistance-type strain sensors has been fabricated from metal-coated carbon nanofiller (CNF)/epoxy composites. Two nanofillers, i.e., multi-walled carbon nanotubes and vapor growth carbon fibers (VGCFs) with nickel, copper and silver coatings were used. The ultrahigh strain sensitivity was observed in these novel sensors as compared to the sensors made from the CNFs without metal-coating, and conventional strain gauges. In terms of gauge factor, the sensor made of VGCFs with silver coating is estimated to be 155, which is around 80 times higher than that in a metal-foil strain gauge. The possible mechanism responsible for the high sensitivity and its dependence with the networks of the CNFs with and without metal-coating and the geometries of the CNFs were thoroughly investigated.
Resumo:
In the legal domain, it is rare to find solutions to problems by simply applying algorithms or invoking deductive rules in some knowledge‐based program. Instead, expert practitioners often supplement domain‐specific knowledge with field experience. This type of expertise is often applied in the form of an analogy. This research proposes to combine both reasoning with precedents and reasoning with statutes and regulations in a way that will enhance the statutory interpretation task. This is being attempted through the integration of database and expert system technologies. Case‐based reasoning is being used to model legal precedents while rule‐based reasoning modules are being used to model the legislation and other types of causal knowledge. It is hoped to generalise these findings and to develop a formal methodology for integrating case‐based databases with rule‐based expert systems in the legal domain.
Resumo:
Nanostructured WO3 thin films have been prepared bythermal evaporation to detect hydrogen at low t emperatures. The influence of heat treatment on the physical, chemical and electronic properties of these films has been investigated. The films were annealed at 400oC for 2 hours in air. AFM and TEM analysis revealed that the as-deposited WO3 film is high amorphous and made up of cluster of particles. Annealing at 400oC for 2 hours in air resulted in very fine grain size of the order of 5 nm and porous structure. GIXRD and Raman analysis revealed that annealing improved the crystallinity of WO3 film. Gas sensors based on annealed WO3 films have shown a high response towards various concentrations (10-10000 ppm) H2 at an operating temperature of 150oC. The improved sensing performance at low operating temperature is due to the optimum physical, chemical and electronic properties achieved in the WO3 film through annealing. - See more at: http://dl4.globalstf.org/?wpsc-product=conductometric-gas-sensors-based-on-nanostructured-wo3-thin-films-2#sthash.IrfhlZ6H.dpuf
Resumo:
The aim of this paper is to compare the performances of the highly porous Nb2O5 Schottky based sensors formed using different catalytic metals for ethanol vapour sensing. The fabricated sensors consist of a fairly ordered nano-vein like porous Nb2O5 prepared via an elevated temperature anodization method. Subsequently, Pt, Pd and Au were sputtered as both Schottky contacts and catalysts for the comparative studies. These metals are chosen as they have large work functions in comparison to the electron affinity of the anodized Nb2O5. It is demonstrated that the device based on Pd/Nb2O5 Schottky contact has the highest sensitivity amongst the developed sensors. The sensing behaviors were studied in terms of the Schottky barrier height variations and properties of the metal catalysts.
Resumo:
This paper presents an object-oriented world model for the road traffic environment of autonomous (driver-less) city vehicles. The developed World Model is a software component of the autonomous vehicle's control system, which represents the vehicle's view of its road environment. Regardless whether the information is a priori known, obtained through on-board sensors, or through communication, the World Model stores and updates information in real-time, notifies the decision making subsystem about relevant events, and provides access to its stored information. The design is based on software design patterns, and its application programming interface provides both asynchronous and synchronous access to its information. Experimental results of both a 3D simulation and real-world experiments show that the approach is applicable and real-time capable.